— KlBEPE)EBl—lEKA OCBITa, HayKa, TexHika Ne 2 (14), 2021

yARN) ISSN 2663 - 4023
e

DOI 10.28925/2663-4023.2021.14.107117

VJIK 004.03

llyenko Anna

Candidate of Technical Sciences, assistant professor , assistant professor of Information Security Systems
Department National Aviation University of Kyiv, Faculty of Cyber Security, Computer and Software
Engineering, Ukraine

ORCID ID: 0000-0001-8565-1117

ilyenko.a.v@nau.edu.ua

llyenko Sergii

Candidate of Technical Sciences, assistant professor , assistant professor of Automation and Energy
Management Department National Aviation University of Kyiv, Aerospace Faculty, Ukraine
ORCID ID: 0000-0002-0437-0995

ilyenko.s.s@nau.edu.ua

Kulish Tatiana

Student Information Security Systems Department

National Aviation University of Kyiv, Faculty of Cyber Security, Computer and Software Engineering, Ukraine
ORCID ID: 0000-0001-8413-9154

teti98kulish@gmail.com

PROSPECTIVE METHODS OF PROTECTING THE FRAMEWORK WEB
APPLICATION ON THE GRADLE AUTOMATIC ASSEMBLY SYSTEM

Abstract. The article considers the problem of providing protection of the web framework
application in the system of automatic build gradle and defines perspective methods of providing
protection. This article defines that the basic and generally accepted approach to ensuring the
security of a web application is a properly constructed test framework. During research the analysis
of modern protection methods of web application of the framework based the automatic assembly
gradle system is made. A comparative analysis of methods is also included.The basic approaches
and methods concerning the organization of application protection are defined on the basis of the
modern framework analysis. During planning a test framework, the automator is faced with the task
of choosing methods that will solve the problem, will be flexible to change, easy to read and are fast
for finding application vulnerabilities. At the stage of developing a test framework, it is planned to
choose a suitable method for the specific category. Choose to check the client, web server or both at
once; write api and ui tests to implement in individual or project or projects, choose the test data to
use; define how to generate and transmit user tokens, which patterns to use; define whether they are
needed. Implement parallelization for api tests or for ui as well; define how to check the models that
come in the answers. This article outlines the methods that cover these issues and makes their brief
analysis. The research of perspective methods and means of web application protection of the
framework on the automatic assembly gradle system allows to state that correctly constructed test
framework is one of effective and complex approaches to provide security information, which allows
detection of vulnerabilities and correction of violations on the early stages of product development
at the right time.

Keywords: api; ui; framework; tests; test data; automation; client; web server; gradle.
1. INTRODUCTION

Formulation of the problem. Nowadays, one of the most popular software development
methodologies is Scram. Scrum is a development framework through which people can quickly
solve emerging problems if productive producing of products if highly important. At the
fulfilled process of Scrum testing has already a continuous cycle. Automation is often used to
speed up the process, which significantly optimizes the verification of tasks, becaus, it is
necessary to check (cover) the product as much as possible even for checking a single feature.

© llyenko A., llyenko S., Kulish T. 2021

Kl 5 E p 5 E3 |—| E KA OCBITa, HayKa, TexHika Ne 2 (14), 2021

= 1 ISSN 2663 - 4023
e

And this is quite a time-consuming procedure. If you look for weaknesses on each feature
manually, then even a two-week iteration will be catastrophically not enough to include it in
the current sprint, especially if you need to fix bugs (bug-fix).Sprint test results are one of the
dominant values in application development. After the testing phase you can get quality product
results. Before to testing the web application behaves like Schrédinger code. You do not know
if everything works as intended. Tests before releasing or updating a product will help make
sure that there are no vulnerabilities or defects in the code. And the sooner the potential and
existing shortcomings of the application are identified, the lower error will cost. To find errors
successfully and quickly, the automator first of all faces the task correct implementation of the
test framework. Properly constructed test architecture ensures fast application coverage by tests,
and also a quick search for its vulnerabilities. The correct presentation of the code provides easy
understanding and further use by those who did not write it. It is important to search the
vulnerability of the application from the beginning of its creation, so it provides a higher degree
of protection and minimizes potential problems. Properly created test framework will ensure a
quick search for incorrect implementation and easy understanding of the code by team
members, and therefore fast writing, where the tests will be standardized for all.

Analysis of recent researches and publications. As in the books [1] Ul Testing with
Puppeteer: Implement end-to-end testing and browser automation using JavaScript and Node.js,
(Dario Kondratiuk), [2] Automating and Testing a REST API: A Case Study in API testing
using: Java, REST Assured, Postman, Tracks, cURL and HTTP Proxies (Alan J Richardson),
this article discusses promising methods for protecting the framework's web application on a
gradle automated build system. Namely, such issues are raised: choosing the client check, web
server or both at once; what test data to use; how to generate and transmit tokens to users;
implement parallelization or not; implement parallelization for api tests or for ui as well; how
to check the models that come in the answers.

The purpose of the article. Nowadays there are many tools for protecting web
applications with frameworks on the automatic build system gradle, which means that you can
increase the level of security of the software at the stage of its development. Even during
planning a framework test, the automator faces with the task of choosing methods that will
solve the problem, will be flexible to change, easy to read and fast when searching for
application vulnerabilities. The purpose of this article is to study the known methods of
protecting web applications with frameworks on the automatic build system gradle, as well as
to present their own solutions that will help to find client-server vulnerabilities at the stage of
software development.

2. POTENTIAL VULNERABILITIES THAT MAY BE DETECTED BY THE
TEST FRAMEWORK

To understand what vulnerabilities can be detected through the test framework, types of
testing that can be implemented through automated tests should be considered. All types of
work performed by the tester can be divided into two types.

First type, functional testing and non-functional testing. The main purpose of this type
is to verify the implementation of the functional application requirements, i.e. the ability of the
application to solve the tasks assigned to it in the given conditions. Requirements include:
security, compliance with standards, ability to interact with other applications, functionality and
clarity [6].

Second type, the main purpose of the second one is, first of all, to check for compliance
with non-functional requirements: convenience (mainly user convenience assessment);

108

—KIBEPBEITEKA: OCBITa, HayKa, TexHika Ne 2 (14), 2021

é_k%) ISSN 2663 - 4023
e

scalability (checks both vertical and horizontal scalability of the tested program) [7];
productivity (ability to run the program at different loads); security (user data protection,
program data protection, burglary resistance); portability (compatibility and portability of the
application for and under different environments, platforms, etc.); reliability (system behavior
in various unexpected situations, the ability to handle non-standard user actions).

Also there are many different subtypes from these basic types. According to the objects
that can be tested, there are localization and internationalization testing (detailed and in-depth
verification of a certain application functionality, for example, only the network part, or only
songs verification, or one page verification); interaction testing (how this application interacts
with others or with the database); configuration testing (checking the accuracy of configuration
files of both the application and the database it cooperates with);

Performance testing: Stability testing (how the application will behave during long-
term operation); Stress testing (checking how the application will work under unexpected
conditions, for example, if the power supply to the server is turned off, whether user data is lost
or if incorrectly entered data is added database); Load testing (how the application will behave
if, for example, a large number of users are logged in at the same time); Or usability testing
(how user-friendly the application is); user interface testing (whether the user interface is
correct in terms of UX design).

Security testing, search for vulnerabilities such as: XSS (Cross-Site Scripting), XSRF /
CSRF (Request Forgery), Code injections (SQL, PHP, ASP, etc.), Server-Side Includes (SSI)
Injection, Authorization Bypass [8].

3. MODERN METHODS OF FRAMEWORK WEB APPLICATION
PROTECTION ON GRADLE AUTOMATIC ASSEMBLY SYSTEM

Modern computer systems are usually developed using a multi-layered architecture
approach. [9] Covering the automation of the api component has the highest priority. The
importance of the API is that it allows different organizations to create software applications
that depend on other applications and services with no need to constantly update them during
changing of the internal components of dependent applications or services. Ui automation is a
bit more difficult to implement. It is often not automated and the manual is tested. In the case
of automation coverage of the client part together with the tests that check the backend, it is a
good practice to create them in a separate project or in another package. Best practice is to cover
both parts, since it scales the application check and increases the search area for its
vulnerabilities.

The test data is actually the input to the program. They represent data that affect or
depend on the execution of a particular module. Some data can be used for positive testing,
usually to verify that a given set of input data for a given function gives the expected result.
Other data can be used for negative testing to test the program's ability to handle unusual,
extreme, exceptional, or unexpected input. Poorly designed test data may not test all possible
test scenarios. That will degrade the quality of the software.

There are some other approaches for creating test data:

e Manual test data generatio: In this approach, test data is entered by testers manually
according to the requirements of the test case. This is a time consuming process and also prone
to mistakes.

e Automated test data generation: It is done by using data generation tools. The main
advantage of this approach is its speed and accuracy. However, this is more expensive than
generating test data manually.

109

— KIBEPBEI3IEKA: OCBITa, HayKa, TexHiKa Ne 2 (14), 2021

= 1 ISSN 2663 - 4023
e

e Internal data entering: This is done using SQL queries. This approach can also
update existing data in the database. It is fast and efficient, but it should be used very carefully
so that the existing database is not damaged.

e Using the third-party tools: There are public tools that understand your test
scenarios at first and then generate or enter data accordingly to ensure broad testing coverage.
These tools are accurate because they are set to business needs. But they are quite expensive.

Atoken is a unique sequence of data. The service must have a function for authorization,
for example. In this case, the token will be the login and password, or what its content, this
function should validate the user. The token can be generated using the GUID of the object or
just MD5 from an inaccurate unique string. This token is returned during authorization and
stored in the secrets’ place in the database. Then this token is sent instead of passwords for
login when accessing the service. And it is also checked if it contains the correct login or
password or this token is available in the database. Accordingly, if there is a suspicious activity
in a certain token, it can be removed from the database, i.e. "blocking" the token. So the session
ends and the user remains active and can raise other sessions.

The standard solution for generating user tokens is to use third-party libraries. For
example, the SoapUl Groovy script to generate a JWT token for ZAPI. The JWT consists of
three parts: a header, payload and a signature. Methods that generate tokens are usually
provided with a public access modifier. This solution appeared due to the need of using this
method at the level of requests called in classes by the tests. Public access causes a vulnerability
to the test framework. Tokens must be hidden and not available at the test level.

TestNG is a Java testing platform that helps organize tests in a structured way and
improves the ease and convenience of reading scripts. Due to a wide range of features, TestNG
has simplified the work of automation testers. One of them is parallel testing or parallel
execution. TestNG provides an automatically defined XML file, where you can set a parallel
method attribute/tests/classes, and with the concept of Java multithreading you can set the
number of threads you want to create for parallel execution. There is the structure for defining
this attribute in XML TestNG below [11]: <suite name = "Parallel_Testing" parallel =
"methods" thread-count = "2" >,

The parallel attribute can be extended to several values, as shown below: methods:
Helps to run methods in separate threads; tests: Helps run all methods which belong to one one
tag in thread; classes: Helps to run all methods which belong to a one class in thread; instances:
Helps to run all methods in one instance in one thread

Along with the parallel attribute, the count-count attribute helps to determine the number
of threads you want to create for running tests at the same time. For example, if threads of one
of the three methods are equal to two, then at runtime two threads start at the same time with
the corresponding methods. While the execution of the first method is completed and the thread
is released, it accepts the next method in the queue. The standard method of implemented
parallelization in tests is written in the code snippet below. In one case, a chrome browser opens,
in another — firefox. These methods are performed at the same time if the number of threads in
the TestNG XML file is equal to two.

public class ParallelTestWithMultiThread {
WebDriver driver;
QTest ()
public void testOnChromeWithBrowserStackUrl ()
{System.setProperty ("webdriver.chrome.driver", ".\\Driver\\chromedriver.exe");

110

A. : KlBEPBE3|—|EKA OCBITa, HayKa, TexHika Ne 2 (14), 2021

= 1 ISSN 2663 - 4023
e

Initialization of the Chrome driver, setting the boot timeout, window scale and basic url
to the test application. The maximize () method is used to fully deploy the window

driver=new ChromeDriver();
driver.manage () .timeouts () .implicitlyWait (10, TimeUnit.SECONDS) ;
driver.get ("https://www.browserstack.com/") ;

driver.manage () .window () .maximize () ;
System.out.println("this is the test related to chrome browserstack
homepage"+ " " +Thread.currentThread () .getId());}

The next test is equivalent to the previous one, except for raising another browser

@Test ()

public void testOnChromeWithBrowserStackSignUp ()

{System.setProperty ("webdriver.gecko.driver", ".\\Driver\\geckodriver.exe");
driver=new FirefoxDriver () ;
driver.manage () .timeouts () .implicitlyWait (10, TimeUnit.SECONDS) ;
driver.get ("https://www.browserstack.com/users/sign_up");
driver.manage () .window () .maximize () ;

The duplicate code, understanding how drivers open and work (the stage of the driver
initialization is at the level of tests) is the problem of using these methods. This problem can be
solved by dividing duplicate content in a separate method or in the base class. Then the class
inheritance is implemented by the classes where the tests are located. But if the methods are
static, after running the tests only one driver will rise. The driver will be reinitialized and as the
result there are two failed tests. The first test will fail at the stage of raising the second driver
[12]. OpenAPI is often used nowadays: specifications as a basis for acceptance tests, namely,
building the test models; using setters and generating entire json, xml files.

Let’s consider how the generation of the client works in more detail. OpenAPI is used
more often nowadays. Opensource has two large quite popular projects. This is Swagger
Codegen, which is currently supported by SmartBear. It has 11,000 stars on GitHub. And
OpenAPI Generatoris also an open source project but it is supported by the community [13].

In fact, OpenAPI Generator is a Swagger Codegen Fork. It withdrew from this project
in 2018 [14]. This happened because of the independent development of Swagger Codegen 3.X
and Swagger Codegen 2.X. As a result, backward compatibility was violated. Many customers
have gone and were not supported. And another reason is the instability of the release cycle.
Releases in Swagger Codegen were quite rare, tests often failed. And that was unsatisfying for
the community [17]. The use of third-party plugins and specifications has its disadvantages: it
is not clear what is inside, whether it is suitable for the project and application; there is a
redundant code that is not used and only overloads the project; there is a risk of incorrect use
of ready solutions due to ignorance of the library specifics [15-16].

4. FURTHER DIRECTIONS FOR RESEARCH

Test data generation. A separate interface [17, 18] can be an alternative to standard
methods and your own solution. In this interface can be implemented [19] two classes
GenerateUIData and GenerateAPIData, in which the redefinition of the method getDate () is
used. This solution can be used to find functional errors, check the mandatory input/transfer of
requisites/all fields. The process of validation: checking the presence of the correct element
with the correct name, which can be used as preconditions for other tests. This significantly
clears the code from unnecessary repetitions and copypastes. The interface looks like this:

public interface DataFormat {String getDate (int minusFromCurrentDate) ;}

111

== KIBEPBE3EKA: ocsira, Hayka, Textika Ne 2 (14), 2021

ey CTPERSECURTY, s 283 a0z

=
This interface is implemented in the GenerateAPIData class. It overrides the data, which
differ for two types of tests in the GenerateUIData class it is done in the same way:

@Override

public String getDate (int minusFromCurrentDate) {

DateTimeFormatter formatter = DateTimeFormatter.ofPattern ("yyyy-MM-dd") ;
return LocalDate.now () .minusYears (minusFromCurrentDate) .format (formatter) ;}

The implemented interface redefines data that differ for two types of tests:

@Override

public String getDate (int minusFromCurrentDate)

{ DateTimeFormatter.ofPattern is responsible for bringing the data to the desired
type. api tests have the format yyyy-MM-dd, and ui MM / dd / yyyy
DateTimeFormatter formatter = DateTimeFormatter.ofPattern ("MM/dd/yyyy");

return LocalDate.now () .minusYears (minusFromCurrentDate) .format (formatter); }

At the level of api tests of data usage look like this:

SubrogationBase postInvalidSubrogationData =
SubrogationData.createSubrogationData (new GenerateAPIData());

At the ui level tests of data usage look like this:

SubrogationBase invalidSubrogationData =
SubrogationData.createInvalidSubrogationData (new GenerateUIData());
navigateToSubrogationPage ()

.editSubrogation (invalidSubrogationData)

As a result, it depends on the choice of new GenerateAPIData () or new GenerateUlData
(), whether the generated data, which is used to test the client and web server, differ.

Token generation and transmission to users. Using standard methods of token
generation and transmission to users may be an alternative way to use your own static generator.
Token generation has a static access modifier, which provides one-time generation of tokens
for all users after starting the build. Unlike standard methods this one significantly speeds up
the execution of tests. This method can be used to look for potential vulnerabilities in the
application, such as security errors, checking for peers, and user rights. All ui tests can be
written and the search of the all vulnerabilities on the client side can be done on the basis of the
own decision using a pool of drivers for implementation of parallelization in ui tests.
Implementation of parallelization for api tests is fairly straightforward. To do this,let’s add
parallel = "tests" thread-count = "4" to the xml file:

<!DOCTYPE suite SYSTEM "http://testng.org/testng-1.0.dtd" >
<suite name="All api test suite" data-provider-thread-count="4" parallel="tests"
thread-count="4">

The implementation of parallelization for ui tests is more complicated. Let’s consider
own representation of the solution of parallelization for ui tests.Calling of one driver instance
is used to implement it in the WebDriverFactory class. Using static methods to open the driver
complicates the task because it means that only one driver can be raised. A driver pool is
initialized in the next way (ThreadLocal <WebDriver> poolOfDrivers = new ThreadLocal <>
()) to raise several drivers. The default constructor is executed immediately after calling this
class. There is a separate instance in the class for raising the driver and the getter that receives
drivers from the object pool, and the setter, which enters the drivers into the object pool.

112

A. : KlBEPBE3|—|EKA OCBITa, HayKa, TexHika Ne 2 (14), 2021

= 1 ISSN 2663 - 4023
e

public class WebDriverFactory extends AbstractWebDriver ({
private WebDriverFactory () {}
private static WebDriverFactory instance = new WebDriverFactory();
public static WebDriverFactory getInstance () {
return instance; }
ThreadLocal<WebDriver> poolOfDrivers = new ThreadLocal<>();
public void setDriver (WebDriver driverData) {
poolOfDrivers.set (driverData) ;}

The driverSet (String browser) method is responsible for raising a new driver and adding
it to the driver pool. Implemented parallelization guarantees doubling of the ui tests speed. It is
known that the execution time of these tests is much longer compared to api tests. If the first
ones last for 40 minutes, the second ones — 15-20 minutes. The ability to choose a browser
almost doubles the testing scope of the application.

Serialization, deserialization. For the process of serialization and deserialization, own
models, which generated by using Plain Old Java Object (POJO) files [28], should be used .
This solution can be used to search for security errors, check the models obtained in the
requests, in functional tests. This allows to skip the transmission of unnecessary variables that
can have a negative impact on the application. In addition, it also checks whether no system
variables are visible to the user in the requests, minimizes the possibility of penetration and
influence of third-party users on the application. POJO class is a Java object that is not bound
by any restrictions other than those ones caused by the Java language specification. POJO is
characterized by: extension of the specified classes; implementation of the specified interface;
contains installed annotations. Compared to other standard solutions, this solution is easy to
operate and implement. And the run time of the test is the same as in other methods.

Cloud testing. Due to the need of having access to multiple platforms and browsers for
running parallel tests, the cost of testing compatibility with parallel testing increases. In
addition, access to all browsers and versions may not be possible. BrowserStack provides access
to numerous platforms and browsers with relative versions in the cloud. Also running of
automatic parallel tests can be used and using multiple browsers and versions.

Artificial Intelligencem Another further area of testing is the use of artificial intelligence
for testing. Nowadays there some programs: Applitools. Helps to find errors inside the user
interface quickly. Applying some machine learning developments, testers can easily find
inaccuracies in the interface. The application allows to adjust the format of the tests to the
required display forms (adaptive view) quickly. If a product uses animation, the utility to find
it could be created [20-23]. Sauce Labs. One of the first programs that allowed launching the
tests in the cloud. The service runs up to 1 million automated tests every day. Based on the
machine learning researching, the Sauce labs developers are working to create a powerful tool
for analyzing the quality of applications. Test.Al. Helps to combine Al and Selenium. The tests
are created in a simple format that is visually very similar to Gherkin. There is no need to write
anything and understand all of the locators. The parameters dynamically define the window of
utility and elements, as well as automatically start the work to check the functionality of the
application. Also it is easy to record all the verification of the created tools. Mabl. Allows to
run functional tests on the application. Created tests can be easily self-taught. There are tools
for combating flaky tests. There are parameters for checking the dynamic change of elements
and shapes. The history of runs can be also checked in the logs to find changes in the utility.
ReTest. Utility for functional testers. The application allows you to create tests even without
programming skills. There are test recording functions, ACCERT standardization and areas of

113

— KlBEPE)EBl—lEKA OCBITa, HayKa, TexHika Ne 2 (14), 2021

= 1 ISSN 2663 - 4023
e

application that require special attention. But these products are not frequently used due to
common mistakes during operation.

5. CONCLUSIONS

Summing up the results, it can be concluded that an important place in the search for
application vulnerabilities is occupied by a properly constructed test framework. It ensures fast
coverage of the application by tests and quick searching of its vulnerabilities. The correct code
presentation provides easy understanding and further use by those who did not write it. To
ensure the highest level of security of the developed application, it is necessary to focus on
security methods that will make the code understandable and pure: project structure; selection
of test data; implementation of a pool of drivers for ui tests parallelization; the process of
generating tokens that are transmitted only to a certain level; pattern builder used in test data;
POJO files for ensuring serialization, deserialization.

REFERENCES

1 Kondratiuk, D. (2021). Ul Testing with Puppeteer: Implement end-to-end testing and browser automation
using JavaScript and Node.js.

2 Richardson, A. (2017). Automating and Testing a REST API: A Case Study in API testing using: Java,
REST Assured, Postman, Tracks, cURL and HTTP Proxies.

3 Postman for API Testing — Pros, Cons, and Alternative Solutions. World Wide
Weh. https://dzone.com/articles/postman-for-apitesting-pros-cons-and-alternative.

4 REST API. World Wide Web. https://www.loadview-testing.com/ru/blog/.

5 Katalon Studio. World Wide Web. https://artoftesting.com/katalonstudio-features-advantages-and-
disadvantages.

6 What is API Testing? World Wide Web. https://www.inflectra.com/rapise/highlights/api-testing.aspx.

7 Front-end and Back-end outlet. World Wide Web. https://skillbox.ru/media/code/frontend i
backend_razrabotka/

8 API Testing: Why It Matters, and How to Do It. World Wide Web. https://blog.udemy.com/api-testing/.

9 SOAP API. World Wide Web. https://quality-lab.ru/blog/soap-api-testing/.

10 Satya, A. (2014). Selenium Webdriver Practical Guide. Paperback: Packt Publishing.

11 Testing software security. Basic understanding and value. World Wide Web.
http://www.protesting.ru/testing/. (in Russian).

12 Gregory, J.; Crispin, L. (2019). Agile Testing: A Training Course for the Whole Team. "Mann, Ivanov and
Ferber". (in Russian).

13 Software Testing. World Wide Webh. https://www.tutorialspoint.com/software_testing/
software_testing_lev els.htm.

14 Software Testing - APl testing. World Wide Web. http://www.tutorialspoint.com/software
testingdictionary/apitesting.htm.

15 The Value of Mixing Ul and API Testing. World Wide. https://mwww.webomates.com/blog/api-testing/the-
value-of-mixing-ui-and-api-testing/.

16 Java For Testers: Learn Java fundamentals fast 2009. World Wide Web. http://tctutorial.ru/frameworks.

17 Patton, R. (2006). Software testing. Pearson Education India.

18 Vinnichenko, I. (2005). Automation of testing processes. Publishing house " (in Russian).

19 Badgett, T., Myers, G. J., & Sandler, C. (2011). Art of Software Testing. Wiley & Sons, Incorporated, John.

20 Savin, R. (2007). Testing Dot Com. Delo.(in Russian).

21 llyenko, A., llyenko, S., & Stashevskyi, D. (2021). Software error tracking module in web applications
based on the use of logger algorithm. Cybersecurity: Education, Science, Technique, 3(11), 61—
72. https://doi.org/10.28925/2663-4023.2021.11.6172

22 Ilyenko, A., llyenko, S., & Vertypolokh, O. (2020). METHOD FOR PROTECTION TRAFFIC FROM
INTERVENTION OF DPI SYSTEMS. Cybersecurity: Education, Science, Technique, 2(10), 75—
87. https://doi.org/10.28925/2663-4023.2020.10.7587.

114

— KlBEpE)E3|_|EKA OCBITa, HayKa, TexHika Ne 2 (14), 2021

CYBERSECURITY: .,

23 llyenko, A., llyenko, S., & Kulish, T. (2020). PROSPECTIVE PROTECTION METHODS OF
WINDOWS OPERATION SYSTEM. Cybersecurity: Education, Science, Technique, 4(8), 124—
134. https://doi.org/10.28925/2663-4023.2020.8.124134.

115

KeBcormi yvisspcatar
imeni Gophca Mpikuerka

&

KlBEPE)E3|—|EKA OCBITa, HayKa, TexHika Ne 2 (14), 2021
4; y (14)

¥ | CYBERSECURITY: ISSN 2663 - 4023

EDUCATION, SCIENCE, TECHNIQUE

Inbenko Anna BagumiBHa

K.T.H., JOIIEHT, JOLEHT Kadeapu KOMIT I0TEpU30BaHMUX CHCTEM 3aXucTy iHdopmarii

Hanionanbhuii aBianiitHuil yHIBEpCHTET YHIBEPCHUTET, (haKynbTeT KibepOe3nekrn KOMI I0TEPHOI Ta IPOrpaMHoOi
imxkeHepii, KuiB, Ykpaina

ORCID ID: 0000-0001-8565-1117

ilyenko.a.v@nau.edu.ua

Inbenko Cepriii CepriiioBny

K.T.H., JOIIEHT, JIOLEHT Ka(eIpu aBTOMATH3alli] Ta €eHEPrOMEHEHKMEHTY

Haunionanbhuii aBianiiiHuil YHIBEPCHTET YHIBEPCUTET, aepoKocMivHuii (akynbrer, Kuis, Ykpaina
ORCID ID: 0000-0002-0437-0995

ilyenko.s.s@nau.edu.ua

Kyaim Tersna MukoJsiaiBHa

OakayaBp, CTyJeHTKa Kaespu KOMIT IOTEPH30BAaHUX CUCTEM 3aXHCTY iH(popMaii

Haunionanbhuii aBianiiHuil yHIBEpCUTET YHIBEpPCUTET, (haKynbTeT KibepOe3nekn KOMIT F0TEPHOI Ta IPOrpaMHoOi
imxenepii, KuiB, Ykpaina

ORCID ID: 0000-0001-8413-9154

teti98kulish@gmail.com

NEPCHEKTUBHI METOJIM 3AXUCTY BEE3ACTOCYHKY ®PEMMBOPKY HA
CUCTEMI ABTOMATHUYHOI 35IPKU GRADLE

Anorania. CraTTs NpH3HAYEHA PO3IIIALy MpoOIeMH 3a0e3leYeHHs 3aXHUCTy Be03aCTOCYHKY
(peliMBOpPKY Ha cucTeMi aBToMaTu4Hol 30ipku gradle Ta BH3HAYEHHS NEPCIEKTUBHUX METOJIB
3a0e3meueHHs 3aXuCTy. B maHiif cTaTTi BU3HAYEHO, 0 0a30BMM 1 3arajJbHOINPUAHATHM IIiIXO0I0M
110 3a0e3meuye 0e3meKky Be03aCTOCYHKY BHCTYIIAE MIPABUIIBHO MO0y I0BaHUM TECTOBUIT (PpeliMBOPK.
B mporeci gocmimKkeHHs 3p00JIeHO aHall3 CydacHUX METOIB 3aXUCTY B€03aCTOCYHKY (hpeiMBOPKY
Ha cuctemi aBromatnyHoi 36ipku gradle. 3pobiieHo MOpIBHSIBHII aHANI3 METOIB, IO BXOMATH Y
olIHy mizkaTeropito. Ha mizcraBi npoBeeHOro anaiizy cy4acHuii ppeliMBOpKiB BU3HAUEHI OCHOBHI
HiIXOMM 1 METOAM WIONO OpraHizamii 3axucTy 3actocyHky. llle mpu maHyBaHHI TECTOBOrO
(bpeliMBOpKY IIepell aBTOMAaTH3aTOPOM CTaBJIATHCS 3ajada BUOpaTH Meroau, WO OymyTb
BUPILIYBAaTH MOCTABJICHI 3a/1a4i, OyyTh THYYKHUMH VIS 3MiH, JIETKUMU JUIS YUTAHHS 1 IIBUAKAMU
IIPY TIOUIYKY Bpa3iMBOCTEH 3acTocyHKY. Ha erami po3poOku TecToBOro ppeliMBOPKY IIaHYEThCS
BUOIp METOIy, 110 3aKPHBaTHME CBOKO KaTeropito. Bubuparu mepeBipky Kii€HTa, BeOcepBepa 4u
000X Biapa3y; HamMCaHHA aPi i Ui TecTiB peanizoByBaTH y OKPEMHX MPOCKTaX Yd OIAHOMY, SIKi
TECTOBI JIaHI BUKOPHUCTOBYBATH; SIK TEHEPYBATH 1 MepeiaBaTi TOKEHH KOPHCTYBaya;, sSIKi MaTepHU
BUKOPHCTOBYBaTH, UM € Y HHUX MOTpeDa, peaiizoByBaTW mNapaienizaiiio 4u Hi. PeamizoByBaTtu
mapanesizaItito s api TeCTiB i st Ui TAKOXK; SIK IePEBIPSITH MOIENI, 1110 IPUXOMAATH ¥ PECIIOHCAX.
VY maHiif cTaTTi HABEJCHO METOH, [0 3aKPUBATUMYTH IIi IUTaHHA 1 3pO0JIEHO iX KOPOTKHH aHai3.
[IpoBeneHe B cTaTTi AOCITiIKEHHA NEPCHEKTHBHUX METOAIB Ta 3aCO0iB 3aXHCTy BE03aCTOCYHKY
(bpeiiMBOpKY Ha CHCTEeMi aBTOMaTHuHOi 30ipku gradle mo3Bojsie CTBEpKYBATH, IO MPABHILHO
noOy/oBaHuii TecToBui (pPEHMBOPK, € OIHMM 3 JMI€BHX Ta KOMIUIGKCHHX TMiJXOMIB IIOMO0
3abe3neueHHs iHGopMallii 6e3MeKy, 110 J03BOJIUTh CBOEYACHO BHUSBIISITH BPA3IIUBOCTI T4 CBOEYACHO
BUIIPABUTH HOPYIISHHS 1€ HAa IOYaTKOBOMY €TaIli po3pOOKH NPOAYKTY, THM CaAMHUM 3MEHIIMBIIH
LiHY TTOMUJIKH.

KuarouoBi cioBa: api; Ui; GppeiiMBOpK; TECTH; TECTOBI JaHi; aBTOMATH3aIlisl; KIi€HT, BeOCEpBeEp;

gradle.

CIIMCOK BUKOPUCTAHUX JT’KEPEJI

1 Kondratiuk, D. (2021). Ul Testing with Puppeteer: Implement end-to-end testing and browser automation
using JavaScript and Node.js.

2 Richardson, A. (2017). Automating and Testing a REST API: A Case Study in API testing using: Java,
REST Assured, Postman, Tracks, cURL and HTTP Proxies.

3 Postman for APl Testing — Pros, Cons, and Alternative Solutions. World Wide
Web. https://dzone.com/articles/postman-for-apitesting-pros-cons-and-alternative.

116

— KlBEPE)E3|—|EKA OCBITa, HayKa, TexHika Ne 2 (14), 2021

CYBERSECURITY: .,

4 REST API. World Wide Web. https://www.loadview-testing.com/ru/blog/.

5 Katalon Studio. World Wide Web. https://artoftesting.com/katalonstudio-features-advantages-and-
disadvantages.

6 What is API Testing? World Wide Web. https://www.inflectra.com/rapise/highlights/api-testing.aspx.

7 Front-end and Back-end outlet. World Wide Web. https://skillbox.ru/media/code/frontend i
backend_razrabotka/

8 API Testing: Why It Matters, and How to Do It. World Wide Web. https://blog.udemy.com/api-testing/.

9 SOAP API. World Wide Web. https://quality-lab.ru/blog/soap-api-testing/.

10 Satya, A. (2014). Selenium Webdriver Practical Guide. Paperback: Packt Publishing.

11 Testing software security. Basic understanding and value. World Wide Web.
http://www.protesting.ru/testing/. (in Russian).

12 Gregory, J.; Crispin, L. (2019). Agile Testing: A Training Course for the Whole Team. "Mann, Ivanov and
Ferber". (in Russian).

13 Software Testing. World Wide Web. https://www.tutorialspoint.com/software_testing/
software_testing_lev els.htm.

14 Software Testing - APl testing. World Wide Web. http://www.tutorialspoint.com/software
testingdictionary/apitesting.htm.

15 The Value of Mixing Ul and API Testing. World Wide. https://www.webomates.com/blog/api-testing/the-
value-of-mixing-ui-and-api-testing/.

16 Java For Testers: Learn Java fundamentals fast 2009. World Wide Web. http://tctutorial.ru/frameworks.

17 Patton, R. (2006). Software testing. Pearson Education India.

18 Vinnichenko, I. (2005). Automation of testing processes. Publishing house " (in Russian).

19 Badgett, T., Myers, G. J., & Sandler, C. (2011). Art of Software Testing. Wiley & Sons, Incorporated, John.

20 Savin, R. (2007). Testing Dot Com. Delo.(in Russian).

21 llyenko, A., llyenko, S., & Stashevskyi, D. (2021). Software error tracking module in web applications
based on the use of logger algorithm. Cybersecurity: Education, Science, Technique, 3(11), 61—
72. https://doi.org/10.28925/2663-4023.2021.11.6172

22 llyenko, A., llyenko, S., & Vertypolokh, O. (2020). METHOD FOR PROTECTION TRAFFIC FROM
INTERVENTION OF DPI SYSTEMS. Cybersecurity: Education, Science, Technique, 2(10), 75—
87. https://doi.org/10.28925/2663-4023.2020.10.7587.

23 llyenko, A., llyenko, S., & Kulish, T. (2020). PROSPECTIVE PROTECTION METHODS OF
WINDOWS OPERATION SYSTEM. Cybersecurity: Education, Science, Technique, 4(8), 124-
134. https://doi.org/10.28925/2663-4023.2020.8.124134

This work is licensed under Creative Commons Attribution-noncommercial-sharealike 4.0 International License.

117

