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HOW TO CONSTRUCT CSIDH ON QUADRATIC AND TWISTED EDWARDS
CURVES

Abstract. In one of the famous works, an incorrect formulation and an incorrect solution of the
implementation problem of the CSIDH algorithm on Edwards curves E, is discovered. A detailed
critique of this work with a proof of the fallacy of its concept is given. Specific properties of three
non-isomorphic classes of supersingular curves in the generalized Edwards form is considered:
complete, quadratic, and twisted Edwards curves. Conditions for the existence of curves of all
classes with the order p+1 of curves over a prime field F  are determined. The implementation of

the CSIDH algorithm on isogenies of odd prime degrees based on the use of quadratic twist pairs of
elliptic curves. To this end, the CSIDH algorithm can be construct both on complete Edwards curves
with quadratic twist within this class, and on quadratic and twisted Edwards curves forming pairs of
quadratic twist. In contrast to this, the authors of a well-known work are trying to prove theorems

with statement about existing a solution within one class E, of curves with a parameter d that is a

square. The critical analysis of theorems, lemmas, and erroneous statements in this work is given.
Theorem 2 on quadratic twist in classes of Edwards curves is proved. A modification of the CSIDH
algorithm based on isogenies of quadratic and twisted Edwards curves is presented. To illustrate the
correct solution of the problem, an example of Alice and Bob calculations in the secret sharing
scheme according to the CSIDH algorithm is considered.

Keywords: curve in generalized Edwards form, complete Edwards curve, twisted Edwards curve,
quadratic Edwards curve, curve order, point order, isomorphism, isogeny, w-coordinates, square.

INTRODUCTION

The reason for writing this article was the work of Japanese scientists [1]. Our attention
was drawn to the title of this paper, which includes the keywords CSIDH (Commutative
Supersingular Isogeny Diffie-Hellman [2]) and Edwards curves [3, 4]. This topic intersects, in
particular, with works [5, 6, 7] and our research [8 - 14].

The most interesting results in this topic, in our opinion, were obtained in [5], which offers
the fastest today arithmetic for computing odd-degree isogenies on complete Edwards curves
[3] using the Farasakhi-Hosseini -coordinates [6] and the theorems of [7 ].

Since the term "Edwards curves", first defined in [4] for all curves E; with one parameter

d, is ambiguous (does not take into account the values of the quadratic character y(d) ), the
question arises: what kind of Edwards curves are we talking about in [1]? The authors of [1]
removed this question with the new term "purely Edwards curves"”, meaning by it all curves E,
with one parameter, except the complete Edwards curves. For them obviously y(d) =1, d =1.

The purpose of this article with a similar title [1] is a critical analysis of this work
together with an illustration of the correct solution of the problem.

In our classification [11, 12], such curves are called “quadratic Edwards curves” (Section
1). Within this class of Edwards curves there are no quadratic twist pairs on which the CSIDH
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algorithm is based. Thus, we found a contradiction already in the title of [1], which proves its
fallacy. The purpose of this article is a critical analysis of the incorrect statements and
conditions of the theorems in [1], a refutation of its concept, and, as a constructive, a proof and
illustration of the correct solution of the problem.

In [8], we proved two theorems adapting formulas of odd degree isogenies for Edwards
curves [7] to twisted Edwards curves and to their computing in Farasakhi-Hosseini (W :Z)-
coordinates [6]. In the next paper [9], using a simple model, it was shown how the CSIDH
algorithm works on the basis of supersingular quadratic and twisted Edwards curves connected
as quadratic twist pairs, some estimates of the calculation cost in projective (W : Z) Farasakhi-
Hosseini coordinates were detailed.

This article is, to a certain extent, a continuation of the previous work [9]. Supersingular
quadratic and twisted Edwards curves with the same order N; = p+1=2"n,m>3, (n- odd)
exist only for p =7mod 8. The minimum even cofactor of the order of such curves is 8, then for

the CSIDH algorithm with an odd n= l_LK:lIi the field modulus, we should choose p =8n-1.

In order to adapt the definitions for the arithmetic of Edwards curves isogenies and curves in
the Weierstrass form, we use the modified point addition law [11, 12] with the change of
coordinates X <>y .

Section 1 gives a brief overview of the properties of complete, quadratic, and twisted
supersingular Edwards curves (SEC) [13,14]. In Section 2, specific aspects of the
implementation of the CSIDH algorithm model on quadratic and twisted SEC are considered,
and a modification of the algorithm [2] is given. Since all the necessary calculations in the
CSIDH algorithm are reduced only to field operations for calculating the isogenic curve
parameter and scalar point multiplications, it is proposed to abandon the calculation of the
isogenic function ¢(R) of random point R . In section 3, we give critical analysis of theorems,

lemmas and statements of article [1], their incorrectness and fallacy, substantiate the conclusion
about the inconsistency of the concept and title of the article. The implementation of the CSIDH
algorithm in [1] (section 6.2) relies on complete Edwards curves, which does not correspond to
the problem posed in the paper. Instead of hypothetical curves E, [z —1] with one parameter in

[1], one should actually use the known twisted SEC with two parameters and other existence
conditions. The proof of Theorem 2 on quadratic twist of curves in the generalized Edwards
form is given. In support of our conclusions, further in Section 4, an example of Alice and Bob's
calculations in the Diffie-Hellman secret sharing scheme on quadratic and twisted SEC is given.
Omitting the problem of computational cost, in this paper we mainly use affine coordinates.

PROPERTIES OF SUPERSINGULAR CURVES IN EDWARDS FORM

Let us consider some specific properties of supersingular Edwards curves (SEC) [13,
14]. An elliptic curve in generalized Edwards form [11] over a prime field F is defined by

the equation
E.o: X +ay’=1+dx’y*, adeF ,a=d, d=1. (1)

If a quadratic character y(ad) = -1, curve (1) is isomorphic to the complete Edwards curve
[3, 4] with one parameter d
E,: X*+y>=1+dx’y*, y(d)=-1. )
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SECs of this class exist for p=3mod 4, and their order isN. = p+1=0mod 4.
Let y(ad) =1, y(a) = y(d) =1, then the curve (1) is isomorphic to the quadratic Edwards
curve [11]

E,: xX*+y>=1+dx’y? y(d)=1, d=1. (3)

In contrast to (2), the parameter d of curve (3) is a square. SEC of class (3) have an order
Ng = p+1=0mod8 and exist over a field F, for p=-1mod8. For both curves (2) and (3)

we accept a parameter a =1, and they are called as curves with one parameter. In [4], curve (3)
together with curve (2) are defined as Edwards curves. At the same time, the difference in the
quadratic characters of the parameters d leads to radically different properties of curves (2)
and (3) [11, 12]. We discuss this below and in Section 3.

The twisted Edwards curve was defined in [11] as a particular case of curve (1) for
x(ad) =1, y(a) = y(d) =-1.

The new classification of curves in the generalized Edwards form (1) in [11, 12] divides
them into 3 non-intersecting (non-isomorphic) classes of complete, quadratic, and twisted
Edwards curves. This avoids the ambiguity and difficulties that arise in the still existing
terminology, which allows the inclusion of one class of Edwards curves in another. In the
pioneering work [4], in particular, authors define the twisted Edwards curve with two
parameters as curve (1). As a result any curve in Edwards form can be called twisted Edwards
curve. However, already in [4] itself, statistics are given for the number of complete, twisted
Edwards curves and Edwards curves, which cannot be sorted out. Another example of
ambiguous terminology is the work [1], the title of which contains the term "Edwards curves",
but according to [4], it includes "complete Edwards curves". The question arises: what kind of
curves are we talking about?

The logic of classification of curves in the generalized Edwards form (1) in [11, 12] is
simple. Since the introduction of a new parameter into the equation (1) in the Edwards form is
necessary only in one case: at y(ad) =1, y(a) = y(d) =-1, it is logical to keep the term
“twisted Edwards curves” [11] for curves with this condition. In this case, the class "twisted
Edwards curves™ becomes unique up to isomorphism (it has no curves in other classes). Another
such unique class is the class of “complete Edwards curves” [3, 4] with the condition
y(ad) =-1. Finally, the third unique class with the condition y(ad) =1, y(a) = y(d)=1is
the class of "quadratic Edwards curves”. This term, proposed by us [11], is justified by the
property y(d) =1, which is different from the conditions of the other two classes. To a certain

extent, it can also be justified by the term “quadratic twist”, which is exactly what the curves
of the corresponding classes (quadratic and twisted curves) are connected. It is important that
there are exactly three classes of curves (1), each with its own name, and no confusion.

In the application to the CSIDH algorithm on SECs, we define a pair of quadratic and
twisted SEC [11] as a pair of quadratic twist with  parameters

y(ad)=1,a=ca, d =cd, y(c) =—1. (see Theorem 2 in Section 3). Since SEC exist only for
p=3mod 4 [13], we can take c=-1, a=1a=-1d =—d, where a,d — are the parameters
of a quadratic curve, and respectively, a,d —of a twisted curve. In other words, the transition
from a quadratic to a twisted curve and vice versa we can defineE; =E,, <> E_, ;. Then the
twisted SEC equation for p =7mod 8 from (1) we can written as
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E,q: X—y?=1-dx*y*, deF,, d=1, g(d)=L1 (4)

Here, the conditions for the modulus p and order of the curve N = p+1=0mod 8 are
similar to curves (3). For p=7mod 8 , of course, also p=3mod 4 holds.
Having fixed the parameter a =—1 and running through all admissible values of d , we

can determine the set of cardinalities of all pT—B curves of each of the 3 classes of curves (1)
(including isomorphic curves). Any twisted SEC one can reduce to the form (4).

The order N = p+1-t of an elliptic curve over a prime field F, is determined based
on the trace t of the characteristic equation 7* +tz + p =0 of the Frobenius endomorphism,
where for some point P = (x.y) the Frobenius endomorphism z(P) = (x",y"). For a quadratic
twist curve, the corresponding order will be N.' = p+1+t. An elliptic curve is supersingular
if and only if, over any extension of a prime field F, the trace of the Frobenius equation is
t=0mod p, inthiscase 7° =—p, 7 ==+,/—p inanimaginary quadratic field [13, 15]. A pair
of curves E and E'is sometimes referred to E[x +1], E[z —1] as two solutions of the quadratic
Frobenius equation. In an algebraic closure pr, a supersingular curve does not contain points of
order p . Over a prime field F, such a curve always has order Np = p+1.

So, quadratic and twisted SEC as a pair of quadratic twist have the same order N. = p+1
but different structure. All their points are different (except two points (0,£1)), so isogenies of

the same degree have different kernels. Both curves are non-cyclic with respect to points of the
2-nd order (contain 3 points of the 2-nd order each, two of which are exceptional points

D, :[i\/é,ooj [4, 11]). Quadratic SEC (3), in addition, contains two exceptional points of the

1
4-th order £k = (00, iﬁj The presence of a noncyclic subgroup of the 4-th order containing

3 points of the 2-nd order limits the number 8 to the minimum even cofactor of the order
Ng =8n (n—odd) of quadratic and twisted Edwards curves [11]. In general, their order is
N =2"n, m>3 . The maximum order of points of these curves is N /2=4n. Itis important

that points of even orders are not involved in the calculations of the CSIDH algorithm (after the
first multiplication of a random point P of maximum order by 4, we have a point of odd order

n).

For the curve (1) J -invariant equal [4, 15]

16(a® +d* +14ad)®
ad(a—d)*

J(a,d) = , ad(a-d)=0 . (5)

This parameter distinguishes isogenic (with different J -invariants) and isomorphic (with equal
J -invariants) curves. Since the J -invariant retains its value for all isomorphic curves and
quadratic twist pairs [15], it is the same for a pair of twisted and quadratic SEC (a=+1). Itis
a useful tool both in finding supersingular curves and in constructing isogeny chain graphs. One
of the properties of the J -invariant is
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Jd)=Jd™).

For the considered classes of SEC, the replacement d — d ™ gives an isomorphism, and for
complete Edwards curves (2) it gives a quadratic twist.

MODIFICATION OF CSIDH ALGORITHM ON QUADRATIC AND TWISTED
EDWARDS CURVES

The PQC CSIDH (Commutative SIDH) algorithm proposed by the authors of [2] for
solving the same key exchange problem (SIDH), but based on isogenic mappings of
supersingular elliptic curves as additive Abelian groups. Such a mapping over a prime field F,

as the class group action is defined [2] and is commutative. In comparison with the well-known
original CRS scheme (Couveignes (1997), Rostovtsev, Stolbunov (2004)) on non-supersingular
curves, the use of isogenies of supersingular curves made it possible to substantial speed up the
algorithm and achieve the smallest known key size (512 bits in [2]).

Let the curve E of order N. = p+1 contain points of small odd orders |,,i =1,2,..., K.
Then there is an isogenic curve E'of the same order as a |, -degree map: E — E'=[l.]*E . The

repetition of this operatione, times we denote [Iiei ]1*E . The values of the isogeny exponents
e, €Z determine the length |e, | of the chain of isogenies of degreel.. In [2], an interval of
exponential values [-m <e, <m] is accepted (m=5), which provides a security level of 128

bits for a quantum computer attack. Negative values of the exponent mean a transition to a
quadratic twist supersingular curve.
The implementation of the CSIDH algorithm mainly uses fast arithmetic of Montgomery

elliptic curves y* = x® + Cx* + x, C = +2 containing 2 points of the 4-th order and, accordingly,
having an order N¢ = p+1=4n(n—odd). [2]. In [5], the CSIDH algorithm implemented on

complete SEC of the same order. In this paper, we use quadratic and twisted SEC in the CSIDH
algorithm, which have the same speed performance as complete Edwards curves [5]. In [8] we
proved 2 theorems for implementation such possibility. With a minimum cofactor of 8, the
order of twisted and quadratic SEC isNp =8n . Thus, for these SEC classes with order

N =8n=p+1 n= H:illi. the field modulus in the CSIDH algorithm we chosen as
p=8[]",} -1=-1mod8 .

Non-interactive Diffie-Hellman key exchange includes the following steps [2]:
1. Choice of parameters. For small odd primes|., computen = l_LKlIi , Where the value Kis

determined by the security level (in [2] K =74, 1,, =587 ), and choose an appropriate field
modulus p = 2”‘1_L'illi —1, m>3and a starting elliptic curve E; .
2. Calculation of public keys. Alice uses her private key Q, = (e,,&,,..,&,) to build an isogenic

mapping ®A:[Ilel,l ez,..,IKeK] (class group action [2]) and calculates the isogenic curve
E, =0, *E, as her public key. Based on the secret key Qgand function®,, Bob performs the
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same calculations and receives his public key E; =®, *E,. These curves are defined their
parameters d,,d; up to isomorphism, which are accepted as public keys known to both parties.
3. Sharing secrets. Here the protocol is similar to item 2 with replacements E, — E; for
Alice and E, — E,for Bob. Knowing Bob's public key, Alice calculates

Egrn =0, *E; =0,0, *E,. Similar actions of Bob give a result

E. =09 *E, =0,0, * E,that coincides with the first one due to the commutatively of the

group operation. The J -invariant of the curve E,;(Ez,) is accepted the shared secret.

Below we present a modification of Alice's computational algorithm according to item 2
[2] using isogenies of quadratic and twisted SEC.

Algorithm 1: Evaluating the class-group action on guadratic and twisted SEC.

Input: d, € E,, ¥(d) =1 and a list of integers Q, = (e,,e,,..&,) .

Output: d, such that [1,*,1,% .1, *“]*E, = E;, where E,5: X' +y*=1+d, Xy’
While somee, =0 do

Sample a random x e F,

Set a<1, E,:x*+y?=1+d,x’y? if (1—x*)/(1-dx*)is asquarein F_,
elsea« -1, E,:x* -y’ =1-d,x°y?,

Let S={i|ae >0} .If S= thenstartover to line 2 whilea < —a,

Let k=] .l andcompute R< [(p+1)/2kIP, P=(xy),

Foreachies do

Compute Q «[k/L]R

If Q= (1,0) Compute the parameter d, an isogeny ¢: E, — E; with kerg =Q Set
d,«d;, e «e—-a,

10. Skip iin Sand k « k/I, if e =0,

11. Returnd,.

In comparison with Algorithm 2 in [2], our Algorithm 1, adapted to twisted and quadratic
SEC, has some modifications:
1. Checking the square in item 3 use the equation of the quadratic Edwards curve (3).
2. With the order of the twisted Edwards curve N =8n= p+1 with the maximum order
N /2 =4nof the point, to obtain a point of the ordern, it is sufficient to double the random

point twice. In item 6, this property lied’s to reducing one doubling in the scalar product of the
point P .

3. Item 9 has been corrected (you cannot reset the index i before zeroing e in item 10).

4. In item 9, only the parameter d, of the isogenic curve is calculated and the function #(R)
point R is not calculated.
5. Updating the number k <k /1. and reset i in item10 we perform after zeroinge, .

According to item 10, exactly| e, | isogenies we calculate for each I, until the exponent
e, Is set to zero. Depending on its sign, isogenies are calculated in the class of quadratic

© 00N o bk wDdE
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(e, >0) or twisted SEC (e, <0).

The ultimate goal of the CSIDH secret sharing algorithm is to find the common curve
parameter d ,; of curve E,; . For each step in the chain of isogenies E — E’, it is only necessary
to calculate the parameterd’=y/(d,Q) based on the parameters d and the kernel<Q > of the
curve E. This calculation involves two SM (Scalar Multiplication) of random points R and
(s — ) recurrent doublings of points of kernel <Q > . Thus, the construction and calculation of
a sufficiently complex function @¢(R) is not necessary for the implementation of the CSIDH
algorithm. Part of the calculations in the algorithm related to the calculation of the function
#(R) can be saved and significantly speed up the algorithm.

The construction of isogenies of odd prime degrees for quadratic Edwards curves based
on Theorem 2 [7], and for twisted Edwards curves - Theorem 1 [8]. In the last work, for the
first time, mapping ¢(P) formulas for the curve (1) are given, depending on two parameters a

andd . We formulate it below.

Theorem 1[1]. LetG ={(1,0),£Q, ,£Q,,...,£Q.} — subgroup of odd order | =2s +1of points
+Q; = (o, 28,), of curve E, , (1) over field F, .
Define

#(P) = (X, y') = (H Xp.q Xp_q 11—[ Yriq Yrq _

Q6 Xq Xq a6 Xq X, j
Then ¢(x, y) is | -isogeny with kernel G from the curve E, , to the curve E,, ;. with parameters

a'=a', d'=d'A’, A= e, (6)
and the mapping function
(%) = (aBy)° s (@)’ = (8%)°
o= (Az I ooy 3 L G oy j )
or
ﬂ X’ —a,
o(X,y) = (AZHn—ll dﬂz 21 A2H|la da XJ (8)

The proof of theorem in [8] is given.

Here, functions (7) and (8) include parametersa,d, which makes it possible to construct
isogenies of twisted Edwards curves.

CRITICAL ANALYSIS OF INCORRECT IMPLEMENTATION CONDITIONS
OF CSIDH ALGORITHM ON EDWARDS CURVES IN WORK [1]

Let us turn to the results of [1]. The main concept of this article is the construction of the
CSIDH algorithm using one class - Edwards curves E, (3) (the authors call it "purely Edwards

curve”, according to our classification [11] - "quadratic Edwards curve") over a prime field F,
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. Since the CSIDH algorithm is based on isogenies of supersingular curves using the quadratic
twist of these curves, the question arises: is the problem posed in [1] solvable?

Al theorems of this work use one Farashakhi-Hoseini coordinate w(P) = dx’y,> for each
point P = (X, y,) . It is clear that the quadratic character y(w(P)) = x(d) . The neutral element
O =(1,0) of curve (3) in theorems [1] designated as0, , although for all curves (1) it does not

depend on the parameterd .
The key theorem in [1] is Theorem 4. Let us formulate it according to the original.

Theorem 4[1]. Let p=3mod 8. Let P be a point on an Edwards curve E, such that the P w-
coordinate w(P) € F, the order of P is not a power of 2, and w(P) is square. If w(2P) is

square, there exists P’ such thatP' e E [z, +1], w(2P) = w(P") , and pT+1P, =0,. If w(2P)

—pilp'zod.

Formulation of the theorem. The first error in the formulation of the theorem: for
p =3mod 8 there are no curves E, (3) that satisfied all conditions of the theorem. Indeed, in
this case the order of the curve N. = p+1=4mod 8 is not divisible by 8. They exist only for
p=7mod8 [13, 14]. The order of such curves with the minimum even cofactor 8 is
N: =8n=p+1, where p=-1mod 8. For example, p=11=3mod8 it sets a condition for

the SEC of order N =12, which does not contain the factor 8. It is clear that it is impossible
to prove such a theorem.

is not square, there exists P' such thatP" € E [x , -1], 1/w(2P) = w(P") and

On the proof of theorems [1]. In total, in Section 4 of [1], 10 lemmas and 7 theorems
are proved. The condition p =3mod 8 is specified in Lemmas 1,2,4, 5, 9, 10 and Theorems 3,

4,5 and 7 with references to the lemmas and to the points of the curve (3), which does not exist
under this condition, as well as its quadratic twist - twisted SEC (4). The proof of theorems and
lemmas with incorrect conditions in the formulation does not make sense.

Further, the conditions of Theorem 4 define only one curve E, (3) with the parameter d

being a square ( y(d)=1,d =1 ). For a random point P =(X,, y,)and a point 2P on this curve,
their respective w-coordinates are

2 2 2 2

_ 2
W(P) = dx’y.2, w(2P)=d| N |
(P) =y, w(2P) (1_ g | Er

It follows that forx,y, #0,0 , the quadratic character x(w(P))= x(W(2P))= x(d)is
determined exclusively by the parameter d and, by the definition of curve E; (3), is a square.

This property is the same for both points P and 2P, which contradicts the second assumption
of the theorem. While the first assumption of the theorem is always true, the second assumption
is always false for a given curve E; (3), since it replaces y(d) =1 with y(d) =-1 . This means

a transition to another class of SEC: complete Edwards curve (2) or twisted Edwards curve (4).
The transition to the class of complete SEC (2) with y(d) = —1we exclude, since:
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The class (2) does not meet the first condition of Theorem 4 ( x(d) =1);

All pairs of quadratic twist connected by parameters d " lie inside this class;
Sets parameters d of SEC (2) and (3) are different (in the sense of d;” =-d,);

The class (2) does not contain points at infinity on which the proof of the theorem based.

Exceptional points (points at infinity) exist only in the classes of quadratic SEC (which are
excluded by the second assumption of Theorem 4) and twisted SEC [4, 11]. Thus, instead of
the curve E, [z, —1] inthe statement of Theorem 4, there should be a twisted curve E, ;[ , —1]

with conditions y(a) = y(d)=-1 . It is important that this is no longer a curve E,, but its
quadratic twist y(d) =1. Below we present our Theorem 2 with the proof of this assertion.

On SEC E,; (3) with orderN. =8n=p+1 , n :l_LKlei there is a unique subgroup
< Q >= G of points of prime order |, as the kernel of a unique isogeny[l.]. Over a prime field

F,. there is a unique SEC of the same order, defined as a quadratic twist Edt of the curve (3),
which has its own subgroup< Q >' of points of the order I, as isogeny kernels[I,]™. All points
(except pointsO = (1,0), D, = (—1,0) ) the pair of curves E, and Edtare distinct, as are the
corresponding kernels <Q> and <Q>' I-isogenies. According to Theorem 2

E,= E. .q» x(@) =-1. This is a twisted SEC, but not the Edwards curve, stated in the problem

statement and in the title of the article [1].
Exceptional points at infinity of the 2-nd and 4-th orders of the curve (1) we can written

[11, 12]
a +1
Dl,2 :(_ \/;,OOJ, * Fl :(Oo,ﬁj, (9)

where the symbol "" we put when dividing by 0. Over a prime field F,, all 4 points contain
quadratic curves E; (3), and the first 2 points of the 2-nd order are twisted curves (1) under the
conditions y(a) = y(d) =-1. The latter generate a non-cyclic subgroup of points of the 2-nd
orderG, ={O0 =(10),D, =(-10), D,,D,}. According [11] the sums of a random point
P =(x,,Y,) ¢ G, with exceptional points of the 2-nd order give the points

a a 4 1 a1
(leyl)‘*‘(i\/;'ooJ:(i E'Xl ’iﬁ'yl j

11
dx?y;  w(P)

From here

w(P+D,,)= (10)

For a similar sum with ordinary point of the 2-nd order D, =(-1,0) we have
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(*,¥1) +(=10) = (=%,,=y1) = W(P+D,)=w(P) (11)

The sum of a random point P =(x,, y,) ¢ G, with a 2-nd order point gives an even-order point,
which on the curve order N. =8n is at least 8 times greater than the number of odd-order
points. Of these, for (2/3) points, the coordinate w(P) is inverted according to (10), for the rest,

according to (11), no. This is true for two classes - quadratic and twisted Edwards curves.
However, this is not a reason to replace one curve with another [1], not forgetting that the
quadratic characters y(d) of their parameters are inverse. It also follows from this that the

second assertion of Theorem 4 is valid only for twisted Edwards curves, but not for curves E,
(3) with one parameter. It is no less important that the condition y(d) = —1of this assertion is
necessary but not sufficient. A condition y(a) = —1 and the connection between the parameters
of the curves E, ;and Eta'd should be determined (see our Theorem 2).

Theorem 2. For the curve E,, (1) in the generalized Edwards form x* +ay* =1+dx’y* ,
defined over a prime field, there is a unique quadratic twist curve EMt with parameters
a=cad=cd,ceF, .

Proof. From equation (1) we have

y© = > (12)

Let y(d) =-1, y(a) =1, a=d? =c™. Quadratic twist (12) be given by transforming a square
into a quadratic non-residue
1-x° 1-x° 1-x°
dy® = -d= dt = —— |=1.
A T W Z(l—d‘lxzj
Then for the curve of quadratic twist we can write the equation

E '=E .: x*+y?=1+d7x?y? y(d)=-1.

ad d
The above conditions are valid for the class of complete Edwards curves with one parameter
fora=d?=c™, a=1d =d™". This result [3] is known.

Let now y(a) = y(d)=1, y(c)=-1. Inthis case, quadratic twist (12) we can written
as

2 2
o, 1-X ,  1-x -

oy 1-x?
a—dx? ca—cdx® a-dx®’

C

This implies that the quadratic twist of a curve E,, with parameters satisfying the condition
y(@)=y(d)=1 (a quadratic curve isomorphic to (3)) gives a curve of the class of twisted
Edwards curves (1) after substitutinga = ca, d = cd. y(c) =—1. In other words, the quadratic
twist of a curve E,is a twisted Edwards curve Ey =E_, 7(d) =1 (c) =—1.. The inverse
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mapping is given by multiplying both parameters by ¢ ™ 1 E, 4, = E4 x(d) =1 y(c) =-1. The
theorem is proved.
Corollary 1. For quadratic Edwards curves E; ( x(d)=1) there are no quadratic twist curves

within this class.
Corollary 2. For complete Edwards curves E;  ( x(d) =—1) there exist quadratic twist curves

E,. inside this class.

Corollary 1 is obvious from the uniqueness of the mapping of quadratic twist as a bijection. It
eliminates the curves E, [z —1] in [1].

Note that this result is well known from [4] (hence the term twisted Edwards curves), but
with a different proof from our proof of Theorem 2.

So, in the class of complete Edwards curves E, (2), the quadratic twist pairs

E, <> E'slies inside this class and has multiplicatively inverse parametersd* . On the
contrary, for the class of quadratic Edwards curves (3), for p=3mod 4 andc=-1 , quadratic

twist E,' — E_, 4 gives a curve from the class of twisted Edwards curves with additively

opposite parameters a andd .

We consider it proved that for the class of SEC E, [z, +1]defined in Theorem 4 [1], there
are no curves of the same class E, [z, —1]as quadratic twist pairs, the formulation of Theorem
4 is incorrect, and the concept of [1] is untenable. Strictly speaking, a unique transition of curve

E, (3)with the condition y(d) =1to its quadratic twist is possible only in the class of twisted

SEC with parametersa =ca, d =cd, x(c) =—1. Any SEC of this class is isomorphic to curve

(4).

Interestingly, the implementation of the CSIDH algorithm in [1] (Section 6.2) uses the
parameters of [2] for cyclic curves in the Montgomery form with one point of the 2-nd order
and the field modulus p=4-1;-I,-...-,,-1,1,, =587, p=3mod 4, therefore the algorithm
also works on complete Edwards curves E, (2) , isomorphic to cyclic curves in the

Montgomery form. This does not correspond to the task, and does not confirmed by theoretical
results. In addition, such an implementation of the CSIDH, is known [5].

MODEL OF IMPLEMENTATION OF THE CSIDH ALGORITHM ON
QUADRATIC AND TWISTED SEC

To illustrate the above conclusions, consider a simple model of the CSIDH algorithm on
quadratic and twisted SEC that form quadratic twist pairs with the same order [9]. Let such a
pair of curves contain kernels of the 3-rd and 5-th order at the smallest value n =15, then the
minimum prime p =239 and the order of these curves N =16n = 240. The parameter d of
the entire family of 118 quadratic Edwards curves can be taken as squares
d =r>mod p,r = 2..119.. Of these, 30 pairs of quadratic and twisted SKE were found with
parameters a=tland y(ad) =1.The quadratic SEC (3) is denoted by E, , and the twisted SKE

(4) isdenoted asE_, _, . Table 1 shows the parameter d values for pairs of quadratic and twisted
SEC. We written they as squares d =r>mod p,,r =5..119.
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Table 1.

Parameter d values of quadratic and twisted SEC (a = £1) for p = 239 and N =240

25 64 121 196 50 183 5 10 87 176
24 153 11 110 48 187 120 193 27 160
213 44 2 201 61 3 206 192 80 62

€;

In the CSIDH algorithm, an isogenic mapping ©, =[1,*,1,,..,1.*] (class group action)
from some base curve E, defines an isogenic curve E, =®, *E,. The sign of the degree e,
Isogeny exponent specifies, in our case, a quadratic (e, >0) or twisted (e, < 0) SEC. At one step
of the degree [1.], e, = +1 isogeny chain, the coordinates «, ,k =1..s = (I-1)/2 of the points
of the curve (3) kernel or the curve (4) kernel of order I, are calculated, then using formula (6)
- isogenic curve E'parameterd’. Two chains of isogenies with opposite signs of the

exponents +e, give a neutral element of the mapping[l.® -Ii‘e‘]z[lio], and then we get the

original curve E;, = [Iio]*EO. For example, for a pair of quadratic twist (3), (4) ate, =41, one

© 5 E," | then a transition to quadratic twist (4)

2

can calculate a 3-isogeny curve E,

Eio” = E 110" , then a 3-isogeny of curve (4) E, .., - E_ , , and return to curve

(3) E4 5" — E," . This implies an important property: the sequences of parameters d  of

isogenic quadratic and twisted SEC on a period have a reverse character. In other words, if such
a sequence is calculated for quadratic SEC, then for twisted SEC it is not required to recalculate
it, but it is enough to reverse it on a period (in the opposite order).

Tables 2 and 3 show the results of calculation the parameters d® of chains of 3- and 5-
isogenic quadratic SEC for module p = 239 . For twisted SEC, the sequences d® should be

read backwards on the period T . The period of 3-isogeny is T =5 , and 5-isogeny T =15 .To
completeness in table 2 there are still 4 rows missing, and in table 3 - 2 rows with the parameters
of table 1, however, the given data is sufficient for an example.

Table 2.
Parameter d values of two chains of 3-isogenic quadratic SEC (a=1) for p =239
(period T =5)
i 0 1 2 3 4 5
d® 25 110 50 10 3 25
d® 193 62 61 2 5 193
Table 3.

Parameter d® values of the chain of 5-isogenic quadratic SEC (a=1 ) for p =239 ,

(periodT =15)

i 0 1 2 3 4 5 6 7
d® 25 201 62 10 121 5 110 183

i 8 9 10 11 12 13 14 15
d® 61 3 187 193 50 11 2 25
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Let us take the secret keys of the exponents {e} isogenies of Alice and Bob's

Q,=B-4), Q,=(-45 | theirfunctions of isogenic mappings, respectively ®, =[3*,5]
,®, =[37,5%], Let's calculate their public keys d,,d, . As the starting curve of the chain of
isogenies, we will take the curve E@ = E,.. Alice calculates the parameters of 7 isogenic

curves E@: three 3-isogenuc quadratic SEC and 4 5-isogenic twisted SEC in an arbitrary order.
According to tables 2 and 3, her calculations generate a chain of length 7 isogeny curves

© _
E™ = Ezs - E110 - Eso - ElO = E—l,—lO - E—l,—62 - E—l,—201 - E—l,—25 - E—l,—2 = E,.

So, Alice's public key d , = 2.. Similar calculations of Bob with a secret key Q, = (—4,5)
form a chain of length 9 isogeny curves

EZS - E3 - ElO - ESO - EllO = E—l,—llO - E—l,—183 - E—l,—61 - E—l,—3 - E—l,—187 - E—l,—193 = E193l

which gives the value of its public key d, =193.
Further, in the secret-sharing scheme, Alice, knowing Bob's public key, calculates the
isogenic curveE,, =[3°,5*]*E,,; = E,;,. Bob gets the same result using the function

E,; =[3*5°]1*E, = E,q,. The shared secret is the parameterd ,, =187. If we know the sum
key of Alice and Bob Q,+Q;=(-11), using tables 2, 3, it is easy to check this result:

d®=25-5d®=3->d® =187. Keys of opposite sign make the work of Alice and Bob
fruitless.
In principle, the CSIDH algorithm can be perform with exponents {e;} of the same sign

and doubling their values to preserve security, but such a prospect, which halves the number of
curves in the algorithm, is hardly interesting.

The results of the implementation of the Edwards-CSIDH model [5] in projective
coordinates (W :Z) state that it is faster than the Montgomery-CSIDH model in coordinates

(X :Z) by 20%. Note that this model is construct on complete Edwards curves with order
Ng =4n(n—odd). On the basis of Theorems 1 and 2 in [8], in [9], and in this paper, we have
shown how to implement such a model on quadratic and twisted SEC that form pairs of

quadratic twist. The advantage of these 2 classes of curves over the complete Edwards curves
is the doubling of the number of curves used in the CSIDH algorithm with a corresponding

increase in security. In addition, the time-consuming inversion d — d ™ of the parameter is not
required when going to the complete quadratic twist curve.

It can be concluded that the work [4], Theorem 2 and the illustration of the CSIDH model in
this work will convince the authors of [1] of the erroneousness of their concept, that it is possible
to implement the CSIDH algorithm using a single class "purely Edwards curves™. In further
research, we will consider the problems of constant-time CSIDH [16, etc.] and sampling of
points.
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SIK IOBYYBATHU CSIDH HA KBAJIPATUYHHUX I CKPYYEHUX KPUBUX
EJABAPJICA

Amnoraunis. B o1HOi 3 BijoMux poOiT BUSBIIEHI HEKOPEKTHA ITOCTAHOBKA 1 HEBIPHE PIlLICHHS 3a/1a4i
immiementanii anmropurmy CSIDH ma xpusnx Ensapaca E;. Jlama posroprena kpuruka el

po0OTH ¢ IOBENEHHSIM HECIIPOMOXKHOCTI ii KOHIenii. Po3risHyTi crienngiuHi BIaCTUBOCTI TPHOX
Hei30MOp(HUX KJaciB CyNepCHHTYJSIPHUX KPHUBUX B y3arainbHeHOi ¢opmi EnBapaca: moBHuX,
KBaJIpaTUYHHUX Ta CKpy4eHUX KpuBux EnBapnca. BuzHaueHi yMOBHM iCHYBaHHS KPMBUX YCiX 3-X
KJIaciB 3 MOPSIAKOM KPHBUX P +1 HaJ MPOCTHM TOJNEM F,- ImmiemenTanis anropurmy CSIDH nHa

130reHisIX HeMapHUX MPOCTUX CTENeHIB 0a3yeThesl HAa 3aCTOCYBAHHI Map KBaJAPaTUYHOTO KPyUeHHs
eNINTUYHUX KpuBHX. 3 1ieto Meroro ainroputM CSIDH moxxHa OymyBaTH sIK Ha IMOBHUX KPHBHX
EnBapzca 3 kBaipaTHYHUM KPY4YEHHSIM BCEPE/HHI OO Kilacy, abo Ha KBaJpaTHYHUX 1 CKPYyUSHHX
kpuBux EnBapsca, siki CTBOPIOIOTH Mapy KBaJIpaTHYHOTO Kpy4eHHs. B mpoTuBary 10 poro aBTopu
BiZIoMOi POOOTH HAMaraloThCSl JIOBECTH TEOPEMH, SIKi CTBEpIKYIOTh O HASBHOCTI PIILCHHS

BCEPE/IMHI OJIHOTO KJIACY KPUBUX Ed 3 napametrpomd , KUl € kBagpaToMm. [IpoBeneHO KpUTUUHUI

aHaJi3 TeopeM, JieM, NOMHJIKOBUX CTBEpyKeHb B wi€l poboti. JloBemeHo Teopema 2 Tpo
KBaJIpaTUUHE KpyueHHs B Kiacax kpuBux Ensapnca. [puseneno moaudikaris anropurmy CSIDH,
noOy/I0BaHOTO Ha 130TEHIsIX KBaJpaTHYHHUX 1 CKpydeHHMX KpuBHX EnBapaca, s imoctpauii
KOPEKTHOI'O PILIEHHS 33javi pO3MNISIHYTO NpuKiIan oduucieHs Anicu 1 boba B cxemi posmosiny
cexperiB 3riguo anroputMmy CSIDH npu p = 239 .

Karuosi ciioBa: kpuBa B y3aranbHeHi# hopmi Ensapzca, moBHa kpuBa EnBapica ckpydeHa KpruBa
EnBapaca, kBagparnuna kpuBa EnBapzca, mopsiiok KpuBoi, HOPSIOK TOUKH, i30MOp(hi3M, 130TeHis,
W--KOOPJMHATH, KBaJPaTUYHUI JHMIIOK, KBaAPAaTUIHUH HE JINIIOK.
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