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RANDOMIZATION OF CSIDH ALGORITHM ON QUADRATIC AND TWISTED 

EDWARDS CURVES 

 
Abstract. The properties of quadratic and twisted supersingular Edwards curves that form pairs of 

quadratic twist with order 801 nodp  over a prime field 
pF  are considered. A modification of the 

CSIDH algorithm based on odd degree isogenies of these curves is considered. A simple model for 
the implementation of the CSIDH algorithm in 3 minimal odd isogeny degrees 3, 5, 7, with the prime 

field modulus 839p and the order 840EN  of supersingular curves is constructed. At the 

precipitation stage, the parameters of isogenic chains of all degrees for these two classes of 

supersingular Edwards curves are calculated and tabulated. An example of the implementation of 

the CSIDH algorithm as a non-interactive secret sharing scheme based on the secret and public keys 

of Alice and Bob is given. A new randomized CSIDH algorithm with a random equiprobable choice 

of one of the curves of these two classes at each step of the isogeny chain is proposed. The choice 
of the degree of each isogeny is randomized. The operation of the randomized algorithm by an 

example is illustrated. This algorithm as a possible alternative to "CSIDH with constant time" is 

considered. A combination of the two approaches is possible to counter side channel attacks. 

Estimates of the probability of a successful side-channel attack in a randomized algorithm are given. 

It is noted that all calculations in the CSIDH algorithm necessary to calculate the shared secret 
ABd  

are reduced only to calculating the parameter d   of the isogenic curve Е   and are performed by 

field and group operations, in particular, scalar point multiplications and doubling points of the 

isogeny kernel. In the new algorithm we propose to abandon the calculation of the isogenic function 

)(R  of random point R , which significantly speeds up the algorithm. 

 

Keywords: curve in generalized Edwards form, complete Edwards curve, twisted Edwards curve, 

quadratic Edwards curve, curve order, point order, isomorphism, isogeny, randomization, w-

coordinates, square, non-square. 

 

INTRODUCTION 

In the development of the topic of the previous work [1], the present article presents new 

results in the problems of implementation of the CSIDH algorithm [2]. This post-quantum 

cryptography (PQC) algorithm differs from other known algorithms by a minimum key length 
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close to the prime field 
pF  modulus over which group operations are performed. As the most 

efficient algorithm technology, we propose classes of quadratic and twisted supersingular 

Edwards curves (SEC) connected as quadratic twist pairs. Compared with the known 

implementations of CSIDH on complete Edwards curves [3], this technology doubles the space 

of the curves used and, moreover, does not require time-consuming inversion of the curve 

parameter d  in the transition to quadratic twist. 

A well-known problem with the CSIDH algorithm is the vulnerability to a side channel 

attack, which is based on measuring the time of calculation of the isogeny chain of each degree

kl , proportional to the secret exponent kе  of the key. In a large number of articles [15, 16, etc.], 

the solution to this problem is proposed by increasing the exponents kе  by fictitious to a known 

maximum (Constant time CSIDH). It is clear that such redundancy reduces the speed of the 

algorithm In this article, we propose and justify an alternative approach to counter this attack - 

randomization of the CSIDH algorithm. It leads to the inevitable increase in the probability of 

error of the analyst, the only one of which in a long path of measurements thwarts the attack. 

The calculation of isogenies of odd degrees for complete and quadratic Edwards curves 

dE  is carried out according to the formulas defined by Theorems 2–4 of [6]. In our previous 

work [1], we generalized Theorems [6] to curves in the generalized Edwards form with two 

parameters a  and d , which allowed us to apply quadratic and twisted Edwards curves over the 

field pF  in this paper to implement the CSIDH model. 

Our analysis in this paper is based on the properties of quadratic and twisted Edwards 

curves connected as quadratic twist pairs [12, 13]. Supersingular curves of these classes with 

the same order ,3,211  mnppN m

E  ( n - odd) exist only at 4mod3p . The minimum 

even cofactor of the order of such curves is 8, then for the CSIDH algorithm with odd

.
1 


K

i iln  field modulus should be selected as .18  np  In order to adapt the definitions for 

arithmetic isogeny of Edwards curves and Weierstrass curves, we use a modified law of points 

addition [10, 11]. 

Section 1 gives a brief overview of the properties of twisted and quadratic supersingular 

Edwards curves (SECs) [12,13,14]. In Section 2, specific aspects of the implementation of the 

CSIDH algorithm model on quadratic and twisted SECs are considered, a modification of the 

algorithm [2] is given, the parameters of the isogenic curves of the model are calculated and 

tabulated, an example of Alice and Bob's calculations in the Diffie-Hellman secret sharing 

scheme is given. In Section 3, the rationale for the randomization of the CSIDH algorithm with 

a statistical estimate of the probability of a successful side channel attack is given, a new 

randomized CSIDH algorithm is presented, which also suggests abandoning the calculation of 

the isogenic function )(R  of a random point R  of the curve in the CSIDH algorithm. 

 

PROPERTIES OF QUADRATIC AND TWISTED SUPERSINGULAR 

EDWARDS CURVES 

Let us consider some specific properties of supersingular Edwards curves (SECs) [12, 

13]. We define an elliptic curve in the generalized Edwards form [9, 10] by the equation 

 

                            .1,,,,1: *2222

,  ddaFdaydxayxE pda                                          (1) 
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If a quadratic character 1)( ad  , curve (1) is isomorphic to the complete Edwards curve [8, 

9] with one parameter 1)( ad  

                                    .1)(,1: 2222  dydxyxEd                                                              (2) 

SECs of this class exist for 4mod3p , and their order is 4mod01 pNE . 

Let 1)()(,1)(  daad  , then the curve (1) is isomorphic to the quadratic Edwards curve 

[10] 

                                    1,,1)(,1: 2222  ddydxyxEd  ,                                                 (3) 

In contrast to (2), the parameter d  of curve (3) is a square. SEC of class (3) have an order 

8mod01 pNE  and exist over a field pF  for 8mod7p . For both curves (2) and (3) we 

accept a parameter 1a , and they are called as curves with one parameter. In [9], curve (3) 

together with curve (2) are defined as Edwards curves. At the same time, the difference in the 

quadratic characters of the parameters d  leads to radically different properties of curves (2) 

and (3) [10, 11].  

The twisted Edwards curve [9] was defined in [10] as a particular case of curve (1) for 

.1)()(,1)(  daad   So, complete, quadratic and twisted Edwards curves [10] form 3 

non-intersecting classes of curves (1), which allows us to avoid confusion in the definitions 

adopted in [9]. 

In the application to the CSIDH algorithm on SECs, we define a pair of quadratic and 

twisted SECs [10] as a pair of quadratic twist with parameters

1)(,,,1)(  ccddcaaad  , where da,  are the parameters of a quadratic curve, and 

respectively, da , of a twisted curve. Since SECs exist only for 4mod3p  [12], we can take

ddaac  ,1,1,1 . In other words, the transition from a quadratic to a twisted curve 

and vice versa we can define ddd EEE  ,1,1 . Then the twisted SEC equation for 

8mod7p  from (1) we can written as 

 

                .1)(.,1,,1: *2222

,1  ddFdydxyxE pd                                        (4) 

Here, the conditions for the modulus p  and order of the curve 8mod01 pNE  are similar 

to curves (3). For 8mod7p  , of course, also 4mod3p  holds. 

 Having fixed the parameter 1a  and running through all admissible values of d , we 

can determine the set of cardinalities of  all 
2

3p
 curves of each of the 3 classes of curves (1) 

(including isomorphic curves). Any twisted SEC one can reduce to the form (4). 

The order tpNE  1  of an elliptic curve over a prime field pF  is determined based 

on the trace t  of the characteristic equation 02  pt  of the Frobenius endomorphism, 

where for some point ).( yxP   the Frobenius endomorphism ),()( pp yxP  . For the curve of 

quadratic twist, the corresponding order will be tpN
t

E  1 . An elliptic curve is 

supersingular if and only if, over any extension of a prime field pF , the trace of the Frobenius 
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equation is ,mod0 pt    in this case pp   ,2  in an imaginary quadratic field [13, 

15]. A pair of curves E  and tE is sometimes referred to ],1[ E ]1[ E  as two solutions of 

the quadratic Frobenius equation. In an algebraic closure pF , a supersingular curve does not 

contain points of order p . Over a prime field pF , such a curve always has order 1 pNE  . 

So, quadratic and twisted SEC as a pair of quadratic twist have the same order 1 pNE  

but different structure. All their points are different (except two points )1,0(  ), so isogenies of 

the same degree have different kernels. Both curves are non-cyclic with respect to points of the 

2-nd order (contain 3 points of the 2-nd order each, two of which are exceptional points 

1,2   , 
a

D
d

 
    
 

 [9, 10]). Quadratic SEСs (3), in addition, contains two exceptional points of the 

4-th order 1
1

,   .F
d

 
    

 
 The presence of a noncyclic subgroup of the 4-th order containing 

3 points of the 2-nd order limits the number 8 to the minimum even cofactor of the order 

)(8 oddnnNE   of quadratic and twisted Edwards curves [10]. In general, their order is

3,2  mnN m

E  . The maximum order of points of these curves is .42/ nNE   It is important 

that points of even orders are not involved in the calculations of the CSIDH algorithm (after the 

first multiplication of a random point P  of maximum order by 4, we have a point of odd order

n ). 

For the curve (1) J  -invariant equal [9, 14] 

0)(,
)(

)14(16
),(

4

322





 daad

daad

adda
daJ  .                         (5) 

This parameter distinguishes isogenic (with different J -invariants) and isomorphic (with equal 

J -invariants) curves. Since the J -invariant retains its value for all isomorphic curves and 

quadratic twist pairs [15], it is the same for a pair of twisted and quadratic SECs ( 1a  ). It 

is a useful tool both in finding supersingular curves and in constructing isogeny chain graphs. 

One of the properties of the J -invariant is 

                                                  )()( 1 dJdJ . 

For the considered classes of SECs, the replacement 1 dd  gives an isomorphism, and for 

complete Edwards curves (2) it gives a quadratic twist. 

CSIDH ALGORITHM ON QUADRATIC AND TWISTED EDWARDS CURVES 

The PQC CSIDH (Commutative SIDH) algorithm proposed by the authors of [2] for 

solving the same key exchange problem (SIDH), but based on isogenic mappings of 

supersingular elliptic curves as additive Abelian groups. Such a mapping over a prime field pF  

as the class group action is defined [2] and is commutative. In comparison with the well-known 

original CRS scheme (Couveignes (1997), Rostovtsev, Stolbunov (2004)) on non-supersingular 

curves, the use of isogenies of supersingular curves made it possible to substantial speed up the 

algorithm and achieve the smallest known key size (512 bits in [2]). 
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Let the curve E  of order 1 pNE  contain points of small odd orders .,...,2,1, Kklk   

Then there is an isogenic curve E of the same order as a kl -degree map: ElEE k *][ . The 

repetition of this operation ke times we denote El ke

k *][ . The values of the isogeny exponents 

Zek   determine the length || ke  of the chain of isogenies of degree kl . In [2], an interval of 

exponential values ][ mem i  is accepted 5m , which provides a security level of 128 bits 

for a quantum computer attack. Negative values of the exponent mean a transition to a quadratic 

twist supersingular curve. 

The implementation of the CSIDH algorithm mainly uses fast arithmetic of Montgomery 

elliptic curves 2,232  СxСxxy  containing 2 points of the 4-th order and, accordingly, 

having an order )(41 oddnnpNE   [8]. In [3], the CSIDH algorithm implemented on 

complete SECs of the same order. In this paper, we use quadratic and twisted SECs in the 

CSIDH algorithm, which have the same speed performance as complete Edwards curves [8, 9]. 

In [1] we proved 2 theorems for implementation such possibility. With a minimum cofactor of 

8, the order of twisted and quadratic SECs is nNE 8  . Thus, for these SECs classes with order

,18  pnNE  .
1 


K

k kln the field modulus in the CSIDH algorithm we chosen as

8mod118
1

  

K

i ilp  . 

Non-interactive Diffie-Hellman key exchange includes the following steps [2]: 

1. Choice of parameters. For small odd primes il , compute .
1 


K

k kln , where the value K is 

determined by the security level (in [2] 587,74 74  lK  ), and choose an appropriate field 

modulus 3,12
1

  
mlp

K

k k

m
and a starting elliptic curve 0E  . 

2. Calculation of public keys. Alice uses her private key ),..,,( 21 KA eee  to build an isogenic 

mapping ],..,,[ 21

21
Ke

K

ee

A lll  (class group action [2]) and calculates the isogenic curve 

0* EE AA   as her public key. Based on the secret key B and function В , Bob performs the 

same calculations and obtain his public key 0* EE BB  . These curves are defined their 

parameters BA dd ,  up to isomorphism, which are accepted as public keys known to both parties. 

3. Sharing secrets. Here the protocol is similar to item 2 with replacements BEE 0  for Alice 

and AEE 0 for Bob. Knowing Bob's public key, Alice calculates 0** EEE BABABA 

. Similar actions of Bob give a result 0** EEE ABABAB  that coincides with the first 

one due to the commutatively of the group operation. The J -invariant of the curve )( BAAB EE   

is accepted the shared secret. 

Below we present a modification of Alice's computational algorithm according to item 2 

[2] using isogenies of quadratic and twisted SEС. 

 

Algorithm 1: Evaluating the class-group action on twisted and quadratic SEC. 

 

Input: 1)(,  dEd AA   and a list of integers ),...,( 21 KA eee . 

Output: Bd  such that BA

e

K

ee
EElll K *],...,[ 21

21 , where ,1: 22

,

22

, yxdyxE ВАBA   

1. While some 0ke  do 
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2. Sample a random ,pFx  

3. Sеt ,1a 2222 1: yxdyxE AA   if )1)(1( 22  dyx is a square in pF , 

4. else ,1a 2222 1: yxdyxE AA  ,    

5. Let }0|{  kaekS . If  S  then start over to line 2 while ,aa   

6. Let , 


Sk kln and compute  ),(,]2/)1[( yxPPPnpR  , 

7. For each Sk  do 

8. Compute RlnQ k ]/[  

9. If  )0,1(Q  Compute an isogeny BA EE :  with Qker , 

10. Set BA dd  , )(RR  , aee kk   , 

11. Skip k in S and klnn /  if  0ke ,             

12. Return Аd  . 

In comparison with Algorithm 2 in [2], our Algorithm 1, adapted to twisted and quadratic 

SEC, has some modifications: 

1. Checking the square in line 3 use the equation of the quadratic Edwards curve (3). 

2. With the order of the twisted Edwards curve 18  pnNE  with the maximum order 

nNE 42/  of the point, to obtain a point of the order n , it is sufficient to double the random 

point twice. In line 6, this property lied’s to reducing one doubling in the scalar product of the 

point Р . 

3. Libe 10 has been corrected (you cannot reset the index k  before zeroing ke in line 10). 

4.  Updating the number klnn /  and reset k in line11 we perform after zeroing ke . 

According to line 10, exactly || ke  isogenies we calculate for each kl  until the exponent 

ke is set to zero. Depending on its sign, isogenies are calculated in the class of quadratic ( 0ke

) or twisted SEC )0( ke . 

The construction of isogenies of odd prime degrees for quadratic Edwards curves based 

on Theorem 2 [6], and for twisted Edwards curves - Theorem 1 [1]. In the last work, for the 

first time, mapping )(Р  formulas for the curve (1) are given, depending on two parameters a

and d . We formulate it below. 

 

Theorem 1[1]. Let },...,,),0,1{( 21 sQQQG   – subgroup of odd order 12  sl of points 

),,( iiiQ   of curve daE , (1) over field pF .  

Define  

                              .,),()(
,,













  

  



GQ GQ Q

QP

Q

QP

Q

QP

Q

QP

x

y

x

y

x

x

x

x
yxP                           

Then ),( yx is l -isogeny with kernel G from the curve daE ,  to the curve daE ,   with parameters  

 

                                                  laa  , 8Add l ,  
i

s

i
A  


1
 ,                                                      (6) 

 and the mapping function  

                              




















  

s

i
ii

iis

ii
ii

ii

xyd

xy

A

y

xyd

yax

A

x
yx

1 2

22

21 2

22

2 )(1

)()(
,

)(1

)()(
),(








 ,             (7)                       
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or 

 

                     





















  

s

i

i

is

ii

i

i

xda

x

A

y

xd

ax

A

x
yx

1 22

22

21 22

22

2
,

1
),(








 .                                       (8) 

The proof of theorem in [1] is given.  

Here, functions (7) and (8) include parameters da, , which makes it possible to construct 

isogenies of twisted Edwards curves. 

To illustrate the basic calculations of Algorithm 1, consider a simple model of the CSIDH 

algorithm on quadratic and twisted SECs that form quadratic twist pairs with the same order [9, 

10]. Such curves exist only for 1mod8p    and have order 

.8mod0),(1  coddncnpNN
t

EE   Let such a pair of curves contain kernels of the 

3-rd , 5-th and 7-th order at the smallest value 105n , then the minimum prime 839p  and 

the order of these curves 8408  nNE . The parameter d  of the entire family of 418 quadratic 

Edwards curves can be taken as squares .419..2,mod2  rprd . Of these, 66 pairs of 

quadratic and twisted SECs were found with parameters 1a and .1)( ad The quadratic 

SEC (3) we denote by dE , and the twisted SEC (4) as dE  ,1 . Table 1 shows the parameter d

values for pairs of quadratic and twisted SEC. We written they as squares 

.419..2,,mod2  rprd  In this example, the relative share of SECs is about 16%. Note that 

for each curve in Table 1 there is at least one isomorphic curve with a parameter 
1d  and the 

same J -invariant (5). 

Table 1.  

Parameter d values of quadratic and twisted SECs )1( a for 839p  and 840EN . 

144 289 784 2 61 258 

  

508 365 488 30 705 

742 56 259 180 329 135 640 32 38 28 90 

564 772 286 40 610 98 475 63 511 43 795 

414 76 752 800 405 666 112 413 200 236 433 

15 683 293 750 808 578 288 636 514 276 773 

243 45 788 172 777 427 21 810 552 420 230 
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For the first quadratic curve from Table 1, one can construct 3-, 5-, and 7-isogenies and find 

the parameters )(id  of the chain of isogenic curves ТiE
i

d ,...,2,1,0,
)(

  such that )0()( dd T   . The 

period T of the chain of isogenies divides the number 66=2*3*11 of all SECs. Tables 2, 3, 4 

show the results of calculating the parameters )(id  of chains of 3-isogeny, 5-isogeny, and 7-

isogeny quadratic SECs, respectively. At each step Тi ,...,2,1,0 of the degree 12  sl  

isogeny, the coordinates of the points 2/)1(,,..1  lss  of the kernel G are calculated, after 

which the parameter )1( id  of the isogenic curve 
)1( i

dE  is calculated using formula (6). In all 

tables, the numbers i are written in the first line, in the next s lines - the coordinates of the kernel 

points, then - the line with the parameters )(id . For 3-isogenies with a period, 33T  for 

completeness, one more table similar to Table 2 is missing, with the second half of the 

parameters of Table 1. For 5- and 7-isogenies with period 11T , Tables 3 and 4 contain only 

1/3 of all isogenies. Next, we will show that the commutability of the function 

],..,,[ 21

21
Ke

K

ee

A lll makes it possible to obtain final results under conditions of incomplete 

data. The latter circumstance is due to the task of reducing the amount of tabulated data in the 

article. 

For the same purpose, we do not present data for twisted SECs 1,...,2,1,0,
)(

,1  ТiE
i

d

isogenies. Instead, a simple property is used [7]: the sequences )(id  of parameters of isogenies 

0],[ k

e

k el k  and 0],[ k

e

k el k on the period 1,...,2,1,0  Тi  of isogenies have a reverse 

(counter) character. In other words, the sequence of parameters )()0()()1()0( ,,..,, ТТ ddddd   for 

the quadratic SEC ( 0ke  ) is read in reverse order as )()0()0()1()( ,,..,, ТТТ ddddd   for the 

twisted SEC ( 0ke  ). 

Table 2. 

Parameter 
)(id  values of chain of 3-isogenic quadratic SECs ( 1a ) for 839p      

(period 33T ) 

 

i  0 1 2 3 4 5 6 7 8 9 10 

)(i  518 558 768 178 502 44 372 136 258 75 487 

)(id  144 414 405 2 28 259 752 773 15 243 21 

i  11 12 13 14 15 16 17 18 19 20 21 

)(i  697 481 333 248 613 378 663 404 20 377 99 

)(id  433 180 514 578 293 666 38 112 172 683 258 

i  22 23 24 25 26 27 28 29 30 31 32 

)(i  718 379 327 139 781 41 601 344 561 230 477 

)(id  772 488 636 286 508 76 236 43 788 61 289 
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Table 3. 

Parameter 
)(id  values of two chains of 5-isogenic quadratic SECs ( 1a ) for 

839p  (period 11T ) 

i  0 1 2 3 4 5 6 7 8 9 10 

)(

1

i
  

78 343 152 337 318 344 588 222 151 352 390 

)(

2

i
  

537 655 632 720 545 837 790 832 748 372 790 

)(id  144 76 258 293 243 2 788 636 112 180 752 

)(

1

i
  

327 390 91 125 653 17 251 744 409 586 103 

)(

2

i
  

726 552 609 583 655 682 393 764 577 692 531 

)(id  289 508 683 578 15 405 43 488 38 433 259 

Table 4.  

Parameter 
)(id  values of two chains of 7-isogenic quadratic SECs ( 1a ) for 

839p  (period 11T ) 

i  0 1 2 3 4 5 6 7 8 9 10 

)(

1

i
  

9 485 99 161 255 103 367 73 41 422 362 

)(

2

i
  

718 700 319 248 705 131 828 258 731 582 820 

)(

3

i
  

17 826 678 465 322 324 700 99 229 689 591 

)(id  144 293 788 180 76 243 636 752 258 2 112 

)(

1

i
  

314 204 30 86 86 74 324 37 281 284 251 

)(

2

i
  

563 416 337 222 489 314 530 164 513 741 544 

)(

3

i
  

678 207 313 720 571 430 595 496 418 828 342 

)(id  289 578 43 433 508 15 488 259 683 405 38 
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Let us take the secret keys of the exponents }{ iе  of the isogenies  of Alice and Bob 

)5,6,8(),8,5,7(  BA , their functions of the class group actions, respectively 

]7,5,3[ 857 A , ]7,5,3[ 568 B . Compute their public keys ., BA dd As the starting curve 

of the chain of isogenies, we take the curve
144

)0(
EEd   . Then, AdA EE  *

)0(
 , 

BdB EE  *
)0(

. 

In order to simplify the notation in the algorithm for calculating an isogenic curve

AdA EE  *
)0(

, we will use only the parameters )(id  , which completely determine the curves 

)0(
)(

k

i

d eE  and )0(
)(

,1  k

i

d eE as pairs of quadratic twist. The commutability property of the 

function 
А  in our case means that there are 3!=6 options for choosing the order of the isogeny 

degrees. With
144

)0(
EEd  , ]7,5,3[ 857 A and choosing the order of degrees of isogenies 3-

5-7, the values )(id  of tables 2, 3, 4 we define as 

                                   ?
)7(

?

)5(

773

)3(

144 8570 
 d

  

Here, under the value )(id  in parentheses, we conditionally put the degree of isogeny, and above 

the arrow, the value kе  of the exponent of Alice's secret key (the number of steps in the sequence 
)(id  to the right or left, depending on the sign kе ). This choice of the order of isogeny degrees 

turned out to be unsuccessful, since the value 773)( id  is included in the data in Table 2, but 

is not included in Tables 3 and 4. 

In this case, it is more rational to calculate isogenies of higher degrees first (with a smaller 

amount of data), and at the final stage, 3-isogenies. In this case, we get two paths: 

                                   286
)3(

112

)5(

258

)7(

144 7580 
 d

, 

                                   286
)3(

112

)7(

788

)5(

144 7850 
 d

. 

So, Alice's public key is 286Ad . Similarly, we define Bob's public key based on

144

)0(
EEd   and functions ]7,5,3[ 568 B  

                                      514
)3(

258

)7(

788

)5(

144 8560 
 d

, 

                                   514
)3(

258

)5(

636

)7(

144 87650 
 d

 

So, Bob's public key is 514Вd . In the non-interactive CSIDH protocol, the keys BA dd ,

are known to both users. Next, in the secret-sharing scheme, Alice encrypts Bob's public key 

with her private key and computes AВВА EE  *  . Bob acts symmetrically and gets
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ВААВ EE  *  . In our example, Alice's calculations AВА EE  *514  with ]7,5,3[ 857 A

and choosing the order of degrees of isogenies 3-5-7 give the result 

                                      .259259
)7(

38

)5(

683

)3(

514 857 
 

BA
B d

d
 

Accordingly, Bob's calculations ])7,5,3[(* 568

286

 ВАВ EE can be written as 

                                          .259259
)7(

578

)5(

38

)3(

286 568 
 

AВ
А d

d
 

Due to the commutability of the CSIDH AВBA dd  . Knowing the secret keys of Alice and 

Bobs and their sum )3,1,1( BA , it is easy to check this result according to the 

algorithm ]7,5,3[*** 31

144

)0(  EE BAd  

                            259259
)3(

752

)5(

180

)7(

144 1130 
 

AВd
d

 

To avoid ambiguity in obtaining isomorphic curves, the J -invariant (5) 725)( АВdJ  of the 

curve 259E  is taken as the shared secret. 

 

SAMPLE OF RANDOM POINTS AND RANDOMIZATION OF THE CSIDH 

ALGORITHM 

 

The CSIDH algorithm proposed by the authors of [2] is constructed in such a way that 

the calculations of isogenic chains according to functions ],..,,[ 21

21,
Ke

K

ee

ВA lll are performed 

in 2 stages: first, a set S  is formed with key exponents kе of one sign, then another. At each 

stage, the kernels and parameters of exactly || kе  isogenic curves of isogenies of degrees kl  built 

on curves of the same class ( dE  or dE  ,1 ) are sequentially calculated. This obviously generates 

a side-channel attack threat based on the measurement of the time of these calculations, 

proportional to the length || kе and degree kl  of each chain ][ ke

kl . In this regard, in most articles 

on this topic, various variants of "constant time CSIDH" are considered, in which the secret 

exponents are increased to the upper limit by fictitious chains of isogenies. It is clear that such 

protection is achieved by significant redundancy and algorithm slowdown. 

In this work, we propose another method for solving the problem – randomization of 

paths of isogenic chains. The idea is that any random coordinate of an elliptic curve always 

generates a random point ),( yxP   of one of the two curves of a quadratic twist pair. Then 

instead of trying (unsuccessfully with a probability of 1/2) to find a point of a curve of a given 

class and success with a probability of 1, we determine the class of the curve (in our case it is 

the curve dE or dE  ,1 , one of which belongs the point ),( yxP  ). Further, in this class, the 

first isogenic curve )0()1( *][ ElE k  of the degree kl of isogeny corresponding to the sign kе of 

the exponent is calculated. The choice kl  is randomized, and the value || kе  is reduced by 1. At 
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the next step, with a new parameter value )1(d , a random point ),( yxP   of one of the curves 

dE  or dE  ,1  is determined again, the isogeny kernel of a randomly chosen degree kl  is 

determined, and the parameter )2(d  is calculated. The process continues until zeroing all kе  . 

It should be noted that the classical CSIDH already have a guaranteed level of protection 

against the type of side channel attack described above. This level determined by the sign of 

the secret exponent ke of the key. Since for each component ][ kl  of the function   the 

calculation time ][
1

kl and ][
1

kl is the same, the probability of the analyst's success even in the 

conditions of correctly found values kl  is 
7422  K

 (for the data of [2] ). With an average 

length 3
2

1


m
 of the chain of isogenies of each degree kl , the total length of the chain of 

isogenies of the function  is 222743   steps. Let 1p  is the probability of an unmistakable 

determination of the degree kl by an analyst at one step of the randomized CSIDH protocol, 

then its probability of success can be estimated by the value 1,2 1

222

1

74  pp  . For example, at

2

1
1 p , the analyst's probability of success is

2962
 , and at  

4

3
1 p , this probability is close to

1652
. This is well below the security level 

1282
. Various modifications of the proposed 

randomization method are possible with insertions of single fictitious exponents into the sample 

components ][ kl of the function  , which will not introduce redundancy into the calculations. 

Let's not forget that one analyst's mistake destroys all his laborious work. 

To illustrate the randomization method based on the data in tables 2, 3, 4 of the previous 

section, we will give an example of Alice calculating her public key using the secret key

)8,5,7( A . In a sequence of isogenies, let the symbol 0s correspond to the random 

choice of the curve dE  , and the symbol 1s to the choice of dE  ,1 . In a sufficiently long 

sequence, these symbols could be considered as equiprobable. In our example, the length of the 

isogeny chain is 7+5+8=20 with the frequency distribution








4

1
,

4

3
, then it is possible to model 

a short pseudo-random sequence 01010000000010100100 of length 20 isogeny curves on 

the way to calculate Alice's public key. Based, as in the previous section, from the starting curve

144E  , we use the data of tables 2 or 4 for series of symbols 0 of the sequence  , and the data 

of table 3 for series of symbols 1. In the first case, we move to the right along the rows of tables, 

in the second – to the left. The number of steps is determined by the length of a series of identical 

symbols in  and is written with exponential signs above the arrows of isogenic transitions 

below. Thus, on the way , in 20 steps, Alice calculates 

)5(

405

)7(

43

)3(

289

)5(

508

)7(

43

)5(

488

)7(

15

)5(

405

)3(

144 321211120 
 d

 

286286
)3(

636

)7(

293

)5(

243

)3(

15

)5(

405 15111  

Ad  
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This result, of course, coincides with the result of the previous section. Randomization of the 

choice of curves, in fact, randomly splits the exponents of the key A  and introduces significant 

uncertainty into the analyst's task. 

Let us now turn to some properties of the curves dE  and dE  ,1 , which are useful in 

choosing a random point of one of them. For curves of order nNE 8 , there are 8 times more 

points of maximum order than points of odd order. For the latter, in turn, the choice of a point 

of order that divides n  is very unlikely. 

Equations (3) and (4) will be written as 

1)(,
1

1
:

2

2
2 




 d

dx

x
yEd  :                           1)(,

1

1
:

2

2
2

,1 



 d

dx

x
yE d   

Excluding points of small orders and singular points ( )1(),1(),0( 22  dydxxy ), the choice 

of a random element pFx  generates a random point dFyxP ),(  or dEyxP  ,1),( . In the 

first case 1))1)(1(( 22  xdx , in the second case 1))1)(1(( 22  xdx , is performed. 

According to the above formulas, the y -coordinate of the point ),( yxP  is calculated. Below 

we present Algorithm 2 of a randomized CSIDH implementation . 

 

Randomized  Algorithm 2: Evaluating the class-group action on quadratic and twisted 

SEC. 

 

Input: 1)(,  dEd AA   and a list of integers ),...,( 21 KA eee . 

Output: Bd  such that BA

e

K

ee
EElll K *],...,[ 21

21 , where ,1: 22

,

22

, yxdyxE ВАBA   

1. Let }0|{0  kekV ,   }0|{1  kekV , ,
0

0  


Vk kln , ,
1

1  


Vk kln  

2. While some 0ke  do 

3. Sample a random ,pFx  

4. Sеt 0,1  sa ,  2222 1: yxdyxE AA   If 1)1/()1(( 22  dxx , 

5.  Else 1,1  sa 2222 1: yxdyxE AA  ,   

6. Compute  y -coordinate of the point AEyxP  ),( , 

7. Compute  ,]2/)1[( PnpR s  

8. Sample a random sk Vkl | , 

9. Compute RlnQ ks ]/[  

10. If  )0,1(Q  compute kernel G  of  kl - isogeny BA EE : , 

11. Else start over to line 3, 

12. Compute Bd of curve BE , BA dd  , aee kk   , 

13. Skip k in sV and  set )/( kss lnn   If  0ke ,             

14. Return Аd . 

 

This algorithm has 2 important differences from algorithm 1. 

Firstly, we do not divide the calculation of isogenies into 2 stages with curves of one 

class, then another ( аa  ), but we build a random sequence }{s  with an equiprobable choice 



 

 

141 

№ 1 (17), 2022 

 ISSN 2663 - 4023 

of curves dE  or dE  ,1 , at each step. Together with the doubled acceleration of the procedure 

for sampling curves, this deprives the analyst of the possibility of orderly construction of 

subsets 0V , 1V  degrees of isogenies for curves dE  or dE  ,1 . In addition, for each component 

][ ke

kl of the function , the chain of isogenies of length || ke  is divided into fragments of the 

general chain, inserted at random times. This inevitably complicates the task of measuring the 

computation time according to the function ][ ke

kl  . 

Secondly, in Algorithm 2 (line 12) we refuse to calculate the isogenic function )(R  , 

which also significantly speeds up the algorithm. The ultimate goal of the CSIDH secret sharing 

algorithm is to find the common parameter ABd  of curve ABE . For each step in the isogeny chain

EE  , it is only necessary to calculate the parameter ),( Qdd   based on the parameters d  

and the kernel  Q of the domain E  . This calculation involves two scalar multiplications 

(SM) of odd-order random points R  and 2/)1( kl recurrent doublings of points from Q  . 

Thus, the construction and calculation of a sufficiently complex function )(R  is not necessary 

for the implementation of the CSIDH algorithm. While the order of a point R  always contains 

a factor kl , the order of its image )(R does not have such a factor, and the point ЕR )(  is 

useless for finding the kernel of the curve E . It is used only at the end of the chain of isogenies 

at )0,1()(,  QQR   , but this well-known property does not require verification. Part of the 

calculations in Algorithm 1 related to the calculation of the function )0,1()(,  QQR   can be 

saved. 

At the beginning of Algorithm 2, two subsets 1,0, sVs  are formed with degree kl  

numbers, together with two factors 0n and 1n of number 10nnn  . Since the order of the curve is

np 81  , then in line 7 of the algorithm, a point PnR 14 of odd order 0n  is calculated for 

the curve dE , and a point PnR 04 of odd order 
1n  is calculated for the curve dE  ,1 . As in 

Algorithm 1, this minimizes the cost of the next SM that determines the isogeny kernel point Q  

(line 9). Further, in line 10 of the algorithm, the 2/)1( kl  coordinates of the points of the 

kernel G  are calculated by doubling the points. Estimates of the cost of these calculations in 

coordinates ):( ZW  are given in [7]. 

The results of the implementation of the Edwards-CSIDH model [3] in projective 

coordinates ):( ZW  state that it is faster than the Montgomery-CSIDH model in coordinates

):( ZХ  by 20%. Note that this model in [3] is construct on complete Edwards curves with order

npNE 41 . . Based on Theorems 1 and 2 [1], in this paper we have shown how to 

implement such a model on quadratic and twisted SECs that form pairs of quadratic twist. The 

main advantage of these classes of Edwards curves over the complete Edwards curves is the 

doubling of the number of curves in the algorithm with a corresponding increase in security. In 

addition, the time-consuming inversion of the parameter 1 dd  is not required when going 

to the complete SEC of quadratic twist. It also speeds up the algorithm. 

It can be concluded that the method of randomization of the CSIDH algorithm on 

quadratic and twisted SECs proposed in this paper provides an efficient and secure alternative 

to various variants of Constant time CSIDH [15,16, etc.]. Computing of isogenies of odd 

degrees in ( : )W Z  coordinates [3] allows you to implement the fastest calculations today when 

building the PQC protocol CSIDH and similar ones. This article provides an example of such 
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an implementation for a simple model of the CSIDH algorithm. The possibility of refusing to 

calculate the isogenic function )(R of a random point R  is substantiated, which radically 

speeds up the algorithm. The largest computational costs in the CSIDH algorithm are associated 

with scalar multiplications SM of random points, which require more experimental evaluation. 

In further studies, it is planned to obtain such estimates. 
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РАНДОМІЗАЦІЯ АЛГОРИТМУ CSIDH НА КВАДРАТИЧНИХ ТА СКРУЧЕНИХ 

КРИВИХ ЕДВАРДА 

 
Анотація. Розглянуто властивості квадратичних і кручених суперсингулярних кривих 

Едвардса, які утворюють пари квадратичних кручень з порядком над простим полем. 

Розглянуто модифікацію алгоритму CSIDH на основі ізогеній непарного ступеня цих кривих. 

Побудовано просту модель для реалізації алгоритму CSIDH у 3 мінімальних непарних 

ступенях ізогенії 3, 5, 7, з простим модулем поля та порядком суперсингулярних кривих. На 
етапі випадання розраховуються та зводяться в таблицю параметри ізогенних ланцюгів усіх 

ступенів для цих двох класів суперсингулярних кривих Едвардса. Наведено приклад 

реалізації алгоритму CSIDH як неінтерактивної схеми обміну секретами на основі секретного 

та відкритого ключів Аліси та Боба. Запропоновано новий рандомізований алгоритм CSIDH 

з випадковим рівноімовірним вибором однієї з кривих цих двох класів на кожному кроці 

ланцюга ізогенії. Вибір ступеня кожної ізогенії є випадковим. Проілюстровано роботу 

рандомізованого алгоритму на прикладі. Цей алгоритм розглядається як можлива 

альтернатива "CSIDH з постійним часом". Комбінація двох підходів можлива для протидії 

атакам на бокових каналах. Наведено оцінки ймовірності успішної атаки побічного каналу в 

рандомізованому алгоритмі. Зазначається, що всі обчислення в алгоритмі CSIDH, необхідні 

для обчислення загального секрету, зводяться лише до обчислення параметра ізогенної 

кривої та виконуються за допомогою польових і групових операцій, зокрема, множення 
скалярних точок і подвоєння точок ядра ізогенії. У новому алгоритмі ми пропонуємо 

відмовитися від обчислення ізогенної функції випадкової точки , що значно прискорює 

роботу алгоритму. 

 

Ключові слова: крива в узагальненому вигляді Едвардса, повна крива Едвардса, скручена 

крива Едвардса, квадратична крива Едвардса, порядок кривої, точковий порядок, ізоморфізм, 

ізогенія, рандомізація, w-координати, квадрат, неквадрат. 
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