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RANDOMIZATION OF CSIDH ALGORITHM ON QUADRATIC AND TWISTED
EDWARDS CURVES

Abstract. The properties of quadratic and twisted supersingular Edwards curves that form pairs of
quadratic twist with order p +1=0nod8 over a prime field Fp are considered. A modification of the

CSIDH algorithm based on odd degree isogenies of these curves is considered. A simple model for
the implementation of the CSIDH algorithm in 3 minimal odd isogeny degrees 3, 5, 7, with the prime
field modulus p =839and the order N =840 of supersingular curves is constructed. At the
precipitation stage, the parameters of isogenic chains of all degrees for these two classes of
supersingular Edwards curves are calculated and tabulated. An example of the implementation of
the CSIDH algorithm as a non-interactive secret sharing scheme based on the secret and public keys
of Alice and Bob is given. A new randomized CSIDH algorithm with a random equiprobable choice
of one of the curves of these two classes at each step of the isogeny chain is proposed. The choice
of the degree of each isogeny is randomized. The operation of the randomized algorithm by an
example is illustrated. This algorithm as a possible alternative to "CSIDH with constant time" is
considered. A combination of the two approaches is possible to counter side channel attacks.
Estimates of the probability of a successful side-channel attack in a randomized algorithm are given.
It is noted that all calculations in the CSIDH algorithm necessary to calculate the shared secret d 55

are reduced only to calculating the parameter d’ of the isogenic curve E' and are performed by
field and group operations, in particular, scalar point multiplications and doubling points of the
isogeny kernel. In the new algorithm we propose to abandon the calculation of the isogenic function
#(R) of random point R , which significantly speeds up the algorithm.

Keywords: curve in generalized Edwards form, complete Edwards curve, twisted Edwards curve,
quadratic Edwards curve, curve order, point order, isomorphism, isogeny, randomization, w-
coordinates, square, non-square.

INTRODUCTION

In the development of the topic of the previous work [1], the present article presents new
results in the problems of implementation of the CSIDH algorithm [2]. This post-quantum
cryptography (PQC) algorithm differs from other known algorithms by a minimum key length
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close to the prime field r, modulus over which group operations are performed. As the most

efficient algorithm technology, we propose classes of quadratic and twisted supersingular
Edwards curves (SEC) connected as quadratic twist pairs. Compared with the known
implementations of CSIDH on complete Edwards curves [3], this technology doubles the space
of the curves used and, moreover, does not require time-consuming inversion of the curve
parameter d in the transition to quadratic twist.

A well-known problem with the CSIDH algorithm is the vulnerability to a side channel
attack, which is based on measuring the time of calculation of the isogeny chain of each degree
I, , proportional to the secret exponent e, of the key. In a large number of articles [15, 16, etc.],

the solution to this problem is proposed by increasing the exponents e, by fictitious to a known

maximum (Constant time CSIDH). It is clear that such redundancy reduces the speed of the
algorithm In this article, we propose and justify an alternative approach to counter this attack -
randomization of the CSIDH algorithm. It leads to the inevitable increase in the probability of
error of the analyst, the only one of which in a long path of measurements thwarts the attack.
The calculation of isogenies of odd degrees for complete and quadratic Edwards curves
E, is carried out according to the formulas defined by Theorems 2—4 of [6]. In our previous

work [1], we generalized Theorems [6] to curves in the generalized Edwards form with two
parameters a andd, which allowed us to apply quadratic and twisted Edwards curves over the
field F, in this paper to implement the CSIDH model.

Our analysis in this paper is based on the properties of quadratic and twisted Edwards
curves connected as quadratic twist pairs [12, 13]. Supersingular curves of these classes with
the same order N = p+1=p+1=2"n,m>3, (n- odd) exist only at p=3mod 4. The minimum
even cofactor of the order of such curves is 8, then for the CSIDH algorithm with odd

n= HiK:lIi. field modulus should be selected as p =8n—1. In order to adapt the definitions for

arithmetic isogeny of Edwards curves and Weierstrass curves, we use a modified law of points
addition [10, 11].

Section 1 gives a brief overview of the properties of twisted and quadratic supersingular
Edwards curves (SECs) [12,13,14]. In Section 2, specific aspects of the implementation of the
CSIDH algorithm model on quadratic and twisted SECs are considered, a modification of the
algorithm [2] is given, the parameters of the isogenic curves of the model are calculated and
tabulated, an example of Alice and Bob's calculations in the Diffie-Hellman secret sharing
scheme is given. In Section 3, the rationale for the randomization of the CSIDH algorithm with
a statistical estimate of the probability of a successful side channel attack is given, a new
randomized CSIDH algorithm is presented, which also suggests abandoning the calculation of
the isogenic function ¢(R) of a random point R of the curve in the CSIDH algorithm.

PROPERTIES OF QUADRATIC AND TWISTED SUPERSINGULAR
EDWARDS CURVES

Let us consider some specific properties of supersingular Edwards curves (SECs) [12,
13]. We define an elliptic curve in the generalized Edwards form [9, 10] by the equation

E.o: X +ay’=1+dx’y?, adeF,,a=d, d=1. (1)
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If a quadratic character y(ad) =-1 , curve (1) is isomorphic to the complete Edwards curve [8,
9] with one parameter y(ad)=-1

E,: X2 +y>=1+dx’y?, y(d)=-1. (2)

SECs of this class exist for p=3mod 4, and their orderisN. = p+1=0mod 4.
Let y(ad) =1, y(a) = y(d) =1, then the curve (1) is isomorphic to the quadratic Edwards curve
[10]

E,: xX*+y>=1+dx’y?, x(d)=1, d=1, (3)

In contrast to (2), the parameter d of curve (3) is a square. SEC of class (3) have an order
Ng = p+1=0mod 8 and exist over a field F, for p=7mod8. For both curves (2) and (3) we
accept a parametera =1, and they are called as curves with one parameter. In [9], curve (3)
together with curve (2) are defined as Edwards curves. At the same time, the difference in the
quadratic characters of the parameters d leads to radically different properties of curves (2)
and (3) [10, 11].

The twisted Edwards curve [9] was defined in [10] as a particular case of curve (1) for
y(ad) =1, y(a) = y(d) =-1. So, complete, quadratic and twisted Edwards curves [10] form 3

non-intersecting classes of curves (1), which allows us to avoid confusion in the definitions
adopted in [9].

In the application to the CSIDH algorithm on SECs, we define a pair of quadratic and
twisted SECs [10] as a par of quadratic twist with  parameters

y(ad)=1a=ca,d =cd, y(c) =—1, where a,d — are the parameters of a quadratic curve, and
respectively, a,d —of a twisted curve. Since SECs exist only for p=3mod 4 [12], we can take

c=-1,a=1a=-1d =—d. In other words, the transition from a quadratic to a twisted curve
and vice versa we can defineE; =E 4 <> E, ,. Then the twisted SEC equation for
p =7mod 8 from (1) we can written as

E,q: X*—y?=1-dx’y?, deF,, d=1, y(d)=1 (4)

Here, the conditions for the modulus p and order of the curve N = p+1=0mod 8 are similar
to curves (3). For p=7mod 8 , of course, also p=3mod 4 holds.
Having fixed the parameter a =-1 and running through all admissible values of d , we

can determine the set of cardinalities of all pT—S curves of each of the 3 classes of curves (1)
(including isomorphic curves). Any twisted SEC one can reduce to the form (4).

The order Ng = p+1-t of an elliptic curve over a prime field F, is determined based
on the trace t of the characteristic equation z° +tz+ p =0 of the Frobenius endomorphism,
where for some point P = (x.y) the Frobenius endomorphism z(P) = (x”, y") . For the curve of

quadratic twist, the corresponding order will beN.' = p+1+t. An elliptic curve is
supersingular if and only if, over any extension of a prime field F, the trace of the Frobenius
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equationis t=0mod p, inthiscase z° =—p, 7= J_r\/—_p in an imaginary quadratic field [13,
15]. A pair of curves E and E'is sometimes referred to E[z +1], E[z —1] as two solutions of
the quadratic Frobenius equation. In an algebraic closure pr, a supersingular curve does not
contain points of order p . Over a prime field F, such a curve always has order Np = p+1 .

So, quadratic and twisted SEC as a pair of quadratic twist have the same order N = p+1
but different structure. All their points are different (except two points (0,£1)), so isogenies of

the same degree have different kernels. Both curves are non-cyclic with respect to points of the
2-nd order (contain 3 points of the 2-nd order each, two of which are exceptional points

Dp 5 :(i\/é;,ooj [9, 10]). Quadratic SECs (3), in addition, contains two exceptional points of the

1
4-th order *F = (00, iﬁ} The presence of a noncyclic subgroup of the 4-th order containing

3 points of the 2-nd order limits the number 8 to the minimum even cofactor of the order
Ng =8n (n—odd) of quadratic and twisted Edwards curves [10]. In general, their order is

N =2"n, m>3 . The maximum order of points of these curves is N./2=4n. It is important

that points of even orders are not involved in the calculations of the CSIDH algorithm (after the
first multiplication of a random point P of maximum order by 4, we have a point of odd order
n).

For the curve (1) J -invariant equal [9, 14]

16(a* +d?* +14ad)?

J@d)= ad(a—d)*

. ad(a—d)=0 . (5)

This parameter distinguishes isogenic (with different J -invariants) and isomorphic (with equal
J -invariants) curves. Since the J -invariant retains its value for all isomorphic curves and
quadratic twist pairs [15], it is the same for a pair of twisted and quadratic SECs (a=+1). It
is a useful tool both in finding supersingular curves and in constructing isogeny chain graphs.
One of the properties of the J -invariant is

Jd)=3@d™).

For the considered classes of SECs, the replacement d — d ™ gives an isomorphism, and for
complete Edwards curves (2) it gives a quadratic twist.

CSIDH ALGORITHM ON QUADRATIC AND TWISTED EDWARDS CURVES

The PQC CSIDH (Commutative SIDH) algorithm proposed by the authors of [2] for
solving the same key exchange problem (SIDH), but based on isogenic mappings of
supersingular elliptic curves as additive Abelian groups. Such a mapping over a prime field F,
as the class group action is defined [2] and is commutative. In comparison with the well-known
original CRS scheme (Couveignes (1997), Rostovtsev, Stolbunov (2004)) on non-supersingular

curves, the use of isogenies of supersingular curves made it possible to substantial speed up the
algorithm and achieve the smallest known key size (512 bits in [2]).
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Let the curve E of order N¢ = p+1 contain points of small odd orders |, ,k =12,...,K.
Then there is an isogenic curve E'of the same orderasa I, -degree map: E - E'=[l,]*E. The

repetition of this operatione, times we denote[l,* ]*E . The values of the isogeny exponents
e, € Z determine the length |e, | of the chain of isogenies of degreel, . In [2], an interval of

exponential values [-m <e, <m] is accepted m=5, which provides a security level of 128 bits

for a quantum computer attack. Negative values of the exponent mean a transition to a quadratic
twist supersingular curve.
The implementation of the CSIDH algorithm mainly uses fast arithmetic of Montgomery

elliptic curves y? = x® + Cx* + x, C = 2 containing 2 points of the 4-th order and, accordingly,
having an order N. = p+1=4n(n—odd) [8]. In [3], the CSIDH algorithm implemented on

complete SECs of the same order. In this paper, we use quadratic and twisted SECs in the
CSIDH algorithm, which have the same speed performance as complete Edwards curves [8, 9].
In [1] we proved 2 theorems for implementation such possibility. With a minimum cofactor of

8, the order of twisted and quadratic SECs is N =8n . Thus, for these SECs classes with order
N =8n=p+1 n= H:zllk.the field modulus in the CSIDH algorithm we chosen as

p=8[ ], ~1=-1mod8 .
Non-interactive Diffie-Hellman key exchange includes the following steps [2]:

1. Choice of parameters. For small odd primes|,, computen = H:zllk. , Where the value K is
determined by the security level (in [2] K =74,1,, =587 ), and choose an appropriate field
modulus p = 2"‘1_[::1Ik —1, m>3and a starting elliptic curve E, .

2. Calculation of public keys. Alice uses her private key Q2, =(e;,e,,..,€,) to build an isogenic
mapping ©, =[1,*,1,*,..,1,°] (class group action [2]) and calculates the isogenic curve
E, =0, *E, as her public key. Based on the secret key Q;and function®,, Bob performs the
same calculations and obtain his public key E; =®; *E,. These curves are defined their
parameters d,,d; up to isomorphism, which are accepted as public keys known to both parties.
3. Sharing secrets. Here the protocol is similar to item 2 with replacements E, — E; for Alice
and E, — E,for Bob. Knowing Bob's public key, Alice calculatesE;, =®,*E; =0,0, *E,
. Similar actions of Bob give a result E,; =®; *E, = 0,0, * E,that coincides with the first

one due to the commutatively of the group operation. The J -invariant of the curve E, 5 (Eg,)
is accepted the shared secret.

Below we present a modification of Alice's computational algorithm according to item 2
[2] using isogenies of quadratic and twisted SEC.

Algorithm 1: Evaluating the class-group action on twisted and quadratic SEC.

Input: d, €E,, y(d)=1 and a list of integers Q, =(e,,e,,..&,).
2

Output: dg such that[l,* 1,% .1, *“1*E, = E;, where E,z: X*+y*>=1+d,,x°y
1. While somee, #0 do
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Sample a random x e F,

Seta<«1, E,:x*+y?=1+d,x’y? if (x* —1)(dy’ —1)isasquare in F_,
elsea< -1, E,:x*—y*=1-d,x*y?,
Let S={k|ae, >0} .If S= then startoverto line 2 whilea « -a,
Let n=]] Lk andcompute R« [(p+1)/2n]P, P« P(xy),
Foreach keS do

8. Compute Q «[n/l ]R

9. If Q=(L0) Compute an isogeny ¢:E, — E; with ker¢g =Q,

10. Set d, «<—d;, R« ¢(R),e, <, —a,

11. Skip kin Sand n<«n/l, if e =0,

12. Returnd, .

In comparison with Algorithm 2 in [2], our Algorithm 1, adapted to twisted and quadratic
SEC, has some modifications:
1. Checking the square in line 3 use the equation of the quadratic Edwards curve (3).

2. With the order of the twisted Edwards curve N. =8n= p+1 with the maximum order
N /2 =4nof the point, to obtain a point of the ordern, it is sufficient to double the random

point twice. In line 6, this property lied’s to reducing one doubling in the scalar product of the
point P .
3. Libe 10 has been corrected (you cannot reset the indexk before zeroing e, in line 10).

4. Updating the number n <« n/l, and reset kin linell we perform after zeroinge, .

According to line 10, exactly|e, | isogenies we calculate for each I, until the exponent
e, is set to zero. Depending on its sign, isogenies are calculated in the class of quadratic (e, >0
) or twisted SEC (e, <0).

The construction of isogenies of odd prime degrees for quadratic Edwards curves based
on Theorem 2 [6], and for twisted Edwards curves - Theorem 1 [1]. In the last work, for the
first time, mapping ¢(P) formulas for the curve (1) are given, depending on two parameters a

and d . We formulate it below.

N o gk~ wn

Theorem 1[1]. LetG ={(1,0),£Q,,+Q,,...,.+Q.} — subgroup of odd order | =2s-+1of points
+Q; = (o, 28,),0f curve E,, (1) over fieldF .
Define

H(P) = (X, y') = (H Xpiq Xpq 11 Yriq Yro J

o Xq Xq, o Xo X,
Then ¢(x, y)is | -isogeny with kernel G from the curve E, , to the curve E, ,. with parameters

a'=a', d'=d'A’, A= e, (6)
and the mapping function

| Xy (aix)z_(aﬂiy)z Yrre (aiy)z_(ﬂix)z
P _(AZ N s g e g oy J v
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or

a,B x? —a
(X, y) = (AzH..ll dﬁz 2! A2 H|1 ] (8)

a—do;,’x?
The proof of theorem in [1] is given.

Here, functions (7) and (8) include parametersa,d, which makes it possible to construct
isogenies of twisted Edwards curves.

To illustrate the basic calculations of Algorithm 1, consider a simple model of the CSIDH
algorithm on quadratic and twisted SECs that form quadratic twist pairs with the same order [9,
10].  Such  curves exist only  for p=-1mod8 and have  order
N =N_.' = p+1=cn (n—odd), c=0mod 8. Let such a pair of curves contain kernels of the
3-rd , 5-th and 7-th order at the smallest value n =105, then the minimum prime p =839 and
the order of these curves N =8n =840. The parameter d of the entire family of 418 quadratic
Edwards curves can be taken as squaresd =r°mod p, r = 2..419.. Of these, 66 pairs of
quadratic and twisted SECs were found with parameters a=+land y(ad) =1.The quadratic
SEC (3) we denote by E,, and the twisted SEC (4) asE_, _, . Table 1 shows the parameter d
values for pairs of quadratic and twisted SEC. We written they as squares
d =r?>mod p,,r = 2..419. In this example, the relative share of SECs is about 16%. Note that

for each curve in Table 1 there is at least one isomorphic curve with a parameter d ™ and the
same J -invariant (5).

Table 1.

Parameter d values of quadratic and twisted SECs (a = +1) for p =839 and N =840.

144 289 784 2 61 258 508 365 488 30 705
742 56 259 180 329 135 640 32 38 28 90
564 772 286 40 610 98 475 63 511 43 795
414 76 752 800 405 666 112 413 200 236 433
15 683 293 750 808 578 288 636 514 276 773
243 45 788 172 7 427 21 810 552 420 230
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For the first quadratic curve from Table 1, one can construct 3-, 5-, and 7-isogenies and find
the parametersd ® of the chain of isogenic curves E,”,i =01,2,..., T suchthatd ™ =d©® . The

period T of the chain of isogenies divides the number 66=2*3*11 of all SECs. Tables 2, 3, 4
show the results of calculating the parametersd® of chains of 3-isogeny, 5-isogeny, and 7-
isogeny quadratic SECs, respectively. At each step i=0,12,...,7 of the degree 1=2s+1

isogeny, the coordinates of the points «,,..a,s = (1 -1)/2 of the kernel G are calculated, after

which the parameter d ™ of the isogenic curve E,"* is calculated using formula (6). In all
tables, the numbers iare written in the first line, in the next s lines - the coordinates of the kernel

points, then - the line with the parametersd . For 3-isogenies with a period, T =33 for
completeness, one more table similar to Table 2 is missing, with the second half of the
parameters of Table 1. For 5- and 7-isogenies with period T =11, Tables 3 and 4 contain only
1/3 of all isogenies. Next, we will show that the commutability of the function

0, =[1,*,1,%,..,1,* ] makes it possible to obtain final results under conditions of incomplete

data. The latter circumstance is due to the task of reducing the amount of tabulated data in the
article.

For the same purpose, we do not present data for twisted SECs E, ,V,i=0412,..,7-1
isogenies. Instead, a simple property is used [7]: the sequences d of parameters of isogenies
[1,*],e, >0 and [l,*],e <Oon the period i=0.12,.,7-1 of isogenies have a reverse
(counter) character. In other words, the sequence of parameters d©,d®,..,d™,d© =d® for
the quadratic SEC ( e, >0 ) is read in reverse order asd”,d"™,..,d®,d® =d® for the
twisted SEC (e, <0 ).

Table 2.
Parameter d® values of chain of 3-isogenic quadratic SECs (a=1) for p =839
(period T =33)

| 0 1 2 3 4 5 6 7 8 9 10
a® 518 558 768 178 502 44 372 136 258 75 487
g 144 414 405 2 28 259 752 773 15 243 21
i 11 12 13 14 15 16 17 18 19 20 21
a® 697 481 333 248 613 378 663 404 20 377 99
g 433 180 514 578 293 666 38 112 172 683 258
i 22 23 24 25 26 27 28 29 30 31 32
a® 718 379 327 139 781 41 601 344 561 230 477
d® 772 488 636 286 508 76 236 43 788 61 289
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Table 3.

Parameter d® values of two chains of 5-isogenic quadratic SECs (a =1) for
p =839 (periodT =11)

i 0 1 2 3 4 5 6 7 8 9 10

() 78 343 152 337 318 344 588 222 151 352 390

0 537 655 632 720 545 837 790 832 748 372 790

a,

d (i) 144 76 258 293 243 2 788 636 112 180 752

a (i) 327 390 91 125 653 17 251 744 409 586 103
1

O] 726 552 609 583 655 682 393 764 577 692 531

a,
qo 289 508 683 578 15 405 43 488 38 433 259
Table 4.
Parameter d© values of two chains of 7-isogenic quadratic SECs (a=1) for
p =839 (periodT =11)
i 0 1 2 3 4 5 6 7 8 9 10
a® 9 485 99 161 255 103 367 73 41 422 362
1

O] 718 700 319 248 705 131 828 258 731 582 820

a,

a (i) 17 826 678 465 322 324 700 99 229 689 591
3

d (i) 144 293 788 180 76 243 636 752 258 2 112

a (i) 314 204 30 86 86 74 324 37 281 284 251
1

O] 563 416 337 222 489 314 530 164 513 741 544

O] 678 207 313 720 571 430 595 496 418 828 342

g 289 578 43 433 508 15 488 259 683 405 38
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Let us take the secret keys of the exponents {e} of the isogenies of Alice and Bob
Q,=(7-518), Qp=(-8,6-5), their functions of the class group actions, respectively
@, =[3",5",7°1,0, =[3°,5°,7°]. Compute their public keys d,,d,. Asthe starting curve
of the chain of isogenies, we take the curveE,” =E,, . Then, E,=E,7*0, |,
E, =E,”*0,.

In order to simplify the notation in the algorithm for calculating an isogenic curve
E,=E,*0,, we will use only the parametersd ® , which completely determine the curves
E,”(e,>0) and E, ,“ (e, <0)as pairs of quadratic twist. The commutability property of the
function ® , inour case means that there are 3!=6 options for choosing the order of the isogeny
degrees. WithE,” =E_,,, ®, =[37,57°,7%]and choosing the order of degrees of isogenies 3-
5-7, the values d© of tables 2, 3, 4 we define as

dO :144 7. 773 -5 \i 8
®) () (7)

>?

Here, under the value d @ in parentheses, we conditionally put the degree of isogeny, and above
the arrow, the value e, of the exponent of Alice's secret key (the number of steps in the sequence

d® to the right or left, depending on the signe, ). This choice of the order of isogeny degrees

turned out to be unsuccessful, since the value d® =773 is included in the data in Table 2, but
is not included in Tables 3 and 4.

In this case, it is more rational to calculate isogenies of higher degrees first (with a smaller
amount of data), and at the final stage, 3-isogenies. In this case, we get two paths:

dO = 144 8 258 N 112 7
(7) () ®)

dO == 144 -5 N 788 8 N 112 7
() () ©)

So, Alice's public key is d, =286. Similarly, we define Bob's public key based on
E, =E,, and functions ®, =[3°,5°,7°°]

»286,

>286.

dO - 144 6 R 788 -5 N 258 -8
() (7) ©)
d,=144 636 258 _
(7 () ©)
So, Bob's public key isd, =514 . In the non-interactive CSIDH protocol, the keys d,,d;

are known to both users. Next, in the secret-sharing scheme, Alice encrypts Bob's public key
with her private key and computes E,, =E,*®, . Bob acts symmetrically and gets

»514,

8 4514
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E,,=E,*®, .Inourexample, Alice's calculationsE,, =E,,,*®, with ®, =[3",5°,7°]
and choosing the order of degrees of isogenies 3-5-7 give the result

d, =514 , 683 . 38
3) ©) (7)

Accordingly, Bob's calculations E ,, = E,i *(®, =[37°,5°,7°]) can be written as

8 5259 =d ,, =250.

d,=286 , 38 , 578
3) ®) (7)

Due to the commutability of the CSIDH d ,, =d ,,. Knowing the secret keys of Alice and

S 5259 =d ,, =259

Bobs and their sum Q, +Q, =(-1,13) , it is easy to check this result according to the
algorithm E{” *®,*®, =E,,, *[37",5, 7°]

d, =144 , 180 , 752

(7) ®) 3

To avoid ambiguity in obtaining isomorphic curves, the J -invariant (5) J(d ;) =725 of the
curve E,, is taken as the shared secret.

1,259 = d,, =259

SAMPLE OF RANDOM POINTS AND RANDOMIZATION OF THE CSIDH
ALGORITHM

The CSIDH algorithm proposed by the authors of [2] is constructed in such a way that
the calculations of isogenic chains according to functions ©, , =[I,*,1,%,..,I,* Jare performed
in 2 stages: first, a set S is formed with key exponents e, of one sign, then another. At each
stage, the kernels and parameters of exactly | e, | isogenic curves of isogenies of degrees|, built
on curves of the same class ( E, or E_, ;) are sequentially calculated. This obviously generates
a side-channel attack threat based on the measurement of the time of these calculations,
proportional to the length | e, |and degree I, of each chain[l, *]. In this regard, in most articles

on this topic, various variants of "constant time CSIDH" are considered, in which the secret
exponents are increased to the upper limit by fictitious chains of isogenies. It is clear that such
protection is achieved by significant redundancy and algorithm slowdown.

In this work, we propose another method for solving the problem — randomization of
paths of isogenic chains. The idea is that any random coordinate of an elliptic curve always
generates a random point P =(x,y) of one of the two curves of a quadratic twist pair. Then
instead of trying (unsuccessfully with a probability of 1/2) to find a point of a curve of a given
class and success with a probability of 1, we determine the class of the curve (in our case it is

the curve E4 orE_, 4, one of which belongs the point P = (x, y)). Further, in this class, the
first isogenic curve E® =[l1, 1*E© of the degree I, of isogeny corresponding to the sign e, of
the exponent is calculated. The choice I, is randomized, and the value | e, | is reduced by 1. At

138



#K'BEPBE:SHEKA OCBITa, HayKa, TexHika Ne 1 (17), 2022
K& y 17)

7“- CYBERSECURITY: ISSN 2663 - 4023

EDUCATION, SCIENCE, TECHNIQUE

the next step, with a new parameter value d®, a random point P = (x,y) of one of the curves
E, orE, _, is determined again, the isogeny kernel of a randomly chosen degree |, is

determined, and the parameter d® is calculated. The process continues until zeroing alle, .

It should be noted that the classical CSIDH already have a guaranteed level of protection
against the type of side channel attack described above. This level determined by the sign of
the secret exponente, of the key. Since for each component [l ] of the function ® the

calculation time [l, "*]and [I, *]is the same, the probability of the analyst's success even in the

conditions of correctly found values I, is 27 =27 (for the data of [2] ). With an average
length mT+1 =3 of the chain of isogenies of each degreel, , the total length of the chain of
isogenies of the function® is3-74 =222 steps. Let p, is the probability of an unmistakable
determination of the degree |, by an analyst at one step of the randomized CSIDH protocol,

then its probability of success can be estimated by the value 27* p,?%%, p, <1 . For example, at

-296

p, = % the analyst's probability of success is2™" ,and at p, = % , this probability is close to

271 This is well below the security level 2%, Various modifications of the proposed
randomization method are possible with insertions of single fictitious exponents into the sample
components [l, ] of the function® , which will not introduce redundancy into the calculations.

Let's not forget that one analyst's mistake destroys all his laborious work.
To illustrate the randomization method based on the data in tables 2, 3, 4 of the previous
section, we will give an example of Alice calculating her public key using the secret key

Q, =(7,-5,8). In a sequence of isogenies, let the symbol s=0correspond to the random
choice of the curve E, , and the symbol s=1to the choice ofE_, ;. In a sufficiently long

sequence, these symbols could be considered as equiprobable. In our example, the length of the
isogeny chain is 7+5+8=20 with the frequency distribution {% %} then it is possible to model

a short pseudo-random sequence A =00101001000101000000 of length 20 isogeny curves on
the way to calculate Alice's public key. Based, as in the previous section, from the starting curve
E,., . we use the data of tables 2 or 4 for series of symbols 0 of the sequence A , and the data

of table 3 for series of symbols 1. In the first case, we move to the right along the rows of tables,
in the second — to the left. The number of steps is determined by the length of a series of identical
symbols in A and is written with exponential signs above the arrows of isogenic transitions
below. Thus, on the way A, in 20 steps, Alice calculates

dy=144 , 405 , 15 , 488 ., 43 , 508 , 289 , 43 , 405
6) () (7) (5) G @ O 6

405 , 15 , 243 , 293 , 636
©) ©) ©) (7) ©)

L5286 = d, =286
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This result, of course, coincides with the result of the previous section. Randomization of the
choice of curves, in fact, randomly splits the exponents of the key Q, and introduces significant
uncertainty into the analyst's task.

Let us now turn to some properties of the curves E, and E_ _,, which are useful in

choosing a random point of one of them. For curves of order N. =8n, there are 8 times more

points of maximum order than points of odd order. For the latter, in turn, the choice of a point
of order that divides n is very unlikely.
Equations (3) and (4) will be written as
2

2 _ X' -1 ,  1-x?
= , d)=1: E : = ,
dX2 _1 Z( ) —1,—d y dX2 _1

Eqi Y

x(d)=1

Excluding points of small orders and singular points ((xy = 0), (dx® #1), (dy* #1)), the choice
of a random element x e F, generates a random point P(x,y) e F, or P(x,y)eE_ _,. Inthe
first case y((dx* —1)(x* —1)) =1, in the second case y((dx* —1)(x* —1)) =—1, is performed.
According to the above formulas, the y -coordinate of the point P(x,y) is calculated. Below
we present Algorithm 2 of a randomized CSIDH implementation .

Randomized Algorithm 2: Evaluating the class-group action on guadratic and twisted
SEC.

Input: d, €E,, y(d)=1 and a list of integers 2, = (e,,€,,..8) .
Output: dg such that[l,* 1,%,..1,*“1*E, = E;, where E,z: X*+y?=1+d,,x°y?
L LetV, ={kle >0} , Vy={kle <Oh =], b +n=[T.k
2. While somee, =0 do
3. Sample a random x e F,
4, Seta<1,s«0 , E,:x*+y?=1+d,x*y? If y((x* -1 /(dx*-1) =1,
5. Elsea<-1s<1 E,:x*-y*=1-d,x?y?,
6. Compute y -coordinate of the point P =(x,y) € E,,
;
8
9

. Compute R<«[(p+1)/2n,]P,
. Sample a random 1, |k eV,
. Compute Q «[n, /I, IR
10. If Q #(1,0) compute kernel G of |, -isogeny ¢:E, — E;,
11. Else start over to line 3,
12. Compute dof curve E;, d, < d;,e <€ —a,
13. Skip kin V,and setn, «—(n./1,) If e =0,
14. Returnd,.

This algorithm has 2 important differences from algorithm 1.
Firstly, we do not divide the calculation of isogenies into 2 stages with curves of one
class, then another (a <——a), but we build a random sequence {s} with an equiprobable choice

140



#K'BEPBE:SHEKA OCBITa, HayKa, TexHika Ne 1 (17), 2022
K& y 17)

7“- CYBERSECURITY: ISSN 2663 - 4023

EDUCATION, SCIENCE, TECHNIQUE

of curves E, orE_,_,, at each step. Together with the doubled acceleration of the procedure

for sampling curves, this deprives the analyst of the possibility of orderly construction of
subsetsV,,V, degrees of isogenies for curves E; or E_, ;. In addition, for each component

[, Jof the function ®, the chain of isogenies of length|e, | is divided into fragments of the
general chain, inserted at random times. This inevitably complicates the task of measuring the
computation time according to the function[l, *] .

Secondly, in Algorithm 2 (line 12) we refuse to calculate the isogenic function@(R) ,
which also significantly speeds up the algorithm. The ultimate goal of the CSIDH secret sharing
algorithm is to find the common parameterd ,; of curve E ;. For each step in the isogeny chain
E — E', it is only necessary to calculate the parameterd’ = (d,Q) based on the parameters d
and the kernel <Q >of the domainE . This calculation involves two scalar multiplications
(SM) of odd-order random pointsR and (I, —1)/2recurrent doublings of points from<Q> .

Thus, the construction and calculation of a sufficiently complex function #(R) is not necessary
for the implementation of the CSIDH algorithm. While the order of a point R always contains
a factorl, , the order of its image ¢(R) does not have such a factor, and the point¢(R) € E' is
useless for finding the kernel of the curve E' . It is used only at the end of the chain of isogenies
atR=0Q,¢(Q) =(L0) , but this well-known property does not require verification. Part of the
calculations in Algorithm 1 related to the calculation of the function R=Q,#(Q) =(1,0) can be
saved.

At the beginning of Algorithm 2, two subsetsV,,s=0,1 are formed with degree I,

numbers, together with two factors nyand n,of number n =nyn, . Since the order of the curve is
p+1=8n, then in line 7 of the algorithm, a point R =4n, P of odd order n, is calculated for

the curve E;, and a point R =4n,P of odd order n, is calculated for the curveE ;. As in
Algorithm 1, this minimizes the cost of the next SM that determines the isogeny kernel point Q
(line 9). Further, in line 10 of the algorithm, the (I, —1)/2 coordinates of the points of the
kernel G are calculated by doubling the points. Estimates of the cost of these calculations in
coordinates (W : Z) are given in [7].

The results of the implementation of the Edwards-CSIDH model [3] in projective
coordinates (W : Z) state that it is faster than the Montgomery-CSIDH model in coordinates
(X :Z) by 20%. Note that this model in [3] is construct on complete Edwards curves with order
N =p+1=4n. . Based on Theorems 1 and 2 [1], in this paper we have shown how to

implement such a model on quadratic and twisted SECs that form pairs of quadratic twist. The
main advantage of these classes of Edwards curves over the complete Edwards curves is the
doubling of the number of curves in the algorithm with a corresponding increase in security. In
addition, the time-consuming inversion of the parameterd — d ™ is not required when going
to the complete SEC of quadratic twist. It also speeds up the algorithm.

It can be concluded that the method of randomization of the CSIDH algorithm on
quadratic and twisted SECs proposed in this paper provides an efficient and secure alternative
to various variants of Constant time CSIDH [15,16, etc.]. Computing of isogenies of odd
degrees in (W : Z) coordinates [3] allows you to implement the fastest calculations today when

building the PQC protocol CSIDH and similar ones. This article provides an example of such
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an implementation for a simple model of the CSIDH algorithm. The possibility of refusing to
calculate the isogenic function @¢(R)of a random point R is substantiated, which radically
speeds up the algorithm. The largest computational costs in the CSIDH algorithm are associated
with scalar multiplications SM of random points, which require more experimental evaluation.
In further studies, it is planned to obtain such estimates.
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PAHAOMIBALIA AJITOPUTMY CSIDH HA KBAJIPATUYHUX TA CKPYYEHUX
KPUBUX EJIBAPJA

AHoTanis. Po3rnsgHyTo BIACTMBOCTI KBagpaTUYHMX 1 KPYyYEHHX CYNEPCHHTYSPHUX KpPUBHX
EnBapaca, sxi yTBODIOIOTH HapH KBaJApaTHYHUX KPYYeHb 3 MOPSAAKOM HAJ HPOCTUM IOJIEM.
Posrnsinyro momudikanito anroputmy CSIDH Ha 0cHOBI i30reHili HEMapHOI'O CTYIEHS LIMX KPUBHX.
[MobynoBano mpocty Monenb st peaiizauii anroputmy CSIDH y 3 MmiHIMajibHUX HeEMapHUX
CTymeHsIX i3oreHii 3, 5, 7, 3 MPOCTUM MOJYJIEM IIOJIsl Ta TOPSIKOM CYNEpCHHTYIspHUX KpuBux. Ha
eTani BUNaJaHHsS PO3PaXOBYIOTHCS Ta 3BOASATHCS B TAONHMIIO TTApaMETPH 130r€HHUX JIAHIIOTIB YCiX
CTYNEHIB JUIi IIMX JABOX KJIaciB CyNepCHHTYIApHHX KpuBux Ensapnca. Hasenmeno mnpukmnan
peanizauii anroputmy CSIDH sik HeiHTepaKTUBHOI cXeMH OOMiHY CEKpeTaMH Ha OCHOBI CEKPETHOTO
Ta BIAKPUTOro KIto4iB Ajicu Ta boba. 3anpornoHoBaHo HOBHUA paHaoMizoBanuiil ainroputv CSIDH
3 BHIQJIKOBUM PIBHOIMOBIPHMM BHOOPOM OJIHI€T 3 KPMBHX LIUX JBOX KIIACiB HA KOXHOMY KpOII
naHiora i3orenii. Bubip cryneHs koHOI i3oreHii € BumaakoBuM. [IpoinrocTpoBaHO poOOTY
PaHAOMI30BAaHOTO aNropuTMy Ha npukiaagl. lLlefl anmropuTM po3TIADAETbC SIK  MOXKIHMBA
anprepratuBa "CSIDH 3 mocriitnum yacoM". KoMOiHaIs ABOX MiJXOIB MOXIIUBA JJISI IPOTHIT
aTakaMm Ha OOKOBHX KaHayax. HaBe/leHO OLiHKM MMOBIPHOCTI YCIIIIHOI aTaKy MOOIYHOr0 KaHaTy B
PaHIOMI30BaHOMY QJITOPUTMI. 3a3HaYaeThCs, M0 Bei oOuncienns B anroputMi CSIDH, HeoOXiaHi
JUIsl OOYMCIICHHS 3arallbHOTO CEKPEeTy, 3BOAATHCS JIMIIE IO OOYHMCICHHS IapaMerpa i30reHHOi
KPHBOI Ta BHUKOHYIOTBCS 33 JONOMOIOI0 TOJILOBHX 1 TPYIIOBHX OIEpalliif, 30KpeMa, MHOKEHHS
CKaJIIPHUX TOYOK 1 MOABOEHHA TOYOK sIpa i30TeHii. Y HOBOMY alTOPUTMiI MH IIPOMOHYEMO
BIIMOBHUTHUCS BiJ{ OOYMCICHHS 130reHHOI (YHKI1 BHMAJAKOBOI TOYKH , IO 3HAYHO MPUCKOPIOE
poboTy anropuT™My.

KarouoBi cioBa: xpuBa B y3araasHeHOMY BUIIIAAl EnmBaprca, moBHa kpuBa EnBapzca, ckpydena
kpuBa ExBapca, kBagpaTruHa KpuBa EnBapica, mopsgok KpUBOi, TOYKOBUH MOPSIOK, 130MOp(di3Mm,
130TeHis, paHIOoMi3alist, W-KOOPAWHATH, KBAJpaT, HEKBaApaT.
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