|'<| B E pB E3 |_] E KA OCBITa, Hayka, TexHikKa

Ne 1 (29), 2025

| Y B R G R ene

DOI 10.28925/2663-4023.2025.29.847
UDC 004.65

Anatolii Kurotych

Student of the Faculty of Informations Technologies and Mathematics
Lesya Ukrainka Volyn National University, Lutsk, Ukraine

ORCID ID: 0009-0006-8186-4063

akurotych@gmail.com

Lesia Bulatetska

PhD, Associate Professor

Associate Professor at the Department of Computer Science and Cybersecurity
Lesya Ukrainka Volyn National University, Lutsk, Ukraine

ORCID ID: 0000-0002-7202-826X

Bulatetska.Lesya@vnu.edu.ua

Oksana Onyshchuk

PhD, Associate Professor

Associate Professor at the Department of Computer Science and Cybersecurity
Lesya Ukrainka Volyn National University, Lutsk, Ukraine

ORCID ID: 0000-0002-8342-3011

Onyshchuk.Oksana@vnu.edu.ua

RECONSTRUCTING ENTITY RELATIONSHIPS

ISSN 2663 - 4023

IN DATABASE SCHEMAS WITH PLANTUML AND LLMS

Abstract. The article explores the potential of using Large Language Models (LLMs) for automatically
restoring relationships between tables in SQL databases with incompletely defined foreign keys. To
evaluate the ability of LLMs to infer foreign keys from textual descriptions of table structures, an
experimental database was created. The database schema, excluding relationships, was provided as input
to two large language models: ChatGPT-40 and Claude 3.7 Sonnet. For analysis purposes, only basic
information was provided to the LLMs: table names, field names, and primary keys, without any data
examples. The ChatGPT-40 model successfully detected all relationships between tables but
demonstrated limitations in determining the types of these relationships: all were classified as “one-to-
one”, regardless of their actual structure. This indicates the model's inability to accurately interpret the
type of relationships based on textual descriptions. In contrast, the Claude 3.7 Sonnet model not only
correctly identified all existing relationships, but also correctly determined their types (e.g., one-to-many),
demonstrating higher accuracy and a deeper understanding of the database structure within the task at
hand. The description of the table structure was provided to the language models in PlantUML format,
ensuring a standardized, clear and unambiguous representation of the input data. Based on the modeling
results, ER diagrams were also constructed in PlantUML format. The experiment confirms the
effectiveness of LLMs in reconstructing missing foreign keys and shows potential for automated analysis,
documentation, and improvement of existing databases. Following consistent naming conventions during
schema design significantly simplifies both the work of developers and the automated processing of
database structures by intelligent systems, playing a crucial role in these processes.

Keywords: Entity Relationship Diagram (ERD); PlantUML; Automatization; Relational Databases;
Large Language Models (LLMs); ChatGPT-40; Claude 3.7.

INTRODUCTION

In modern software engineering, SQL databases are frequently developed or migrated
without an explicit specification of the structural relationships between entities—namely,
foreign keys. These constraints are critical for preserving data integrity and for constructing
Entity-Relationship (ER) models, yet they are often missing or only partially defined. This is

© A. Kurotych, L. Bulatetska, O. Onyshchuk, 2025

B KIBEPBEI3ITEKA: ocsita, Hayka, Texnika Ne 1(29), 2025

CYBERSECURITY.

commonly due to legacy system limitations, oversight during development, or a lack of
expertise. The absence of foreign key constraints can result in several problems:

Increased difficulty in understanding the schema, particularly for new developers or analysts.

Higher risk of introducing data inconsistency during manipulation.

Inability to generate complete ER diagrams automatically.

Decreased effectiveness of tools that rely on well-defined relationships,as automated code
generation.

Conventional analysis methods rely solely on explicitly defined constraints and cannot
infer hidden or implicit relationships between tables. However, such relationships often exist
and may be reconstructed by analyzing column names, data types, naming patterns, and the
overall semantics of tables.

With the rise of large language models (LLMs), such as GPT [1], Claude [2], LLaMA [3], and
others, it has become possible to leverage their contextual awareness and semantic understanding to
reconstruct implicit relationships within SQL schemas. In contrast to traditional algorithms, LLMs
can take into account linguistic context and flexibly adapt to various schema writing styles.

Furthermore, the adoption of textual modeling tools like PlantUML [4] and Mermaid
[5]—as noted in a study [6] of over 13,000 open-source repositories—reflects a growing shift
toward programmatically generated diagrams.

Text-based representations offer better integration with version control systems and facilitate
automation in software documentation, eliminating the need for visual editing [7]. The integration
of LLMs with tools like PlantUML opens the door to advanced modeling workflows.

There is also a growing interest in the application of artificial intelligence to software
development [8], particularly in the area of UML diagram modeling [9]. In their study [10], Rouabhia
and Hadjadj proposed a methodology for using ChatGPT to automatically enhance UML class
diagrams based on natural language use case descriptions structured in tabular form. Their approach
employs PlantUML for diagram visualization and demonstrates the effectiveness of integrating LLMs
into modeling processes. Harer [11] introduced the concept of a conceptual model interpreter that
leverages LLMs to generate and visualize models in PlantUML and Graphviz formats based on
natural language descriptions. This approach enables interactive creation and refinement of models
through dialogue. Conrardy and Cabot [12] explore the use of LLMs for transforming photos of hand-
drawn UML diagrams—such as those created on whiteboards—into formal models. The authors
emphasize that PlantUML syntax is particularly well-suited for this task, as it is most effectively
interpreted by LLMs. The paper by Kanuka et al. [13] addresses the challenge of bidirectional
traceability between source code and UML design using the GPT-4 LLM model. The authors
demonstrate the model’s ability to generate UML diagrams from code and vice versa, maintaining
consistency between artifacts. PlantUML is used as an intermediate format, which confirms its
effectiveness for integration with LLMSs. The study [14] presents a multi-agent platform that spans all
stages of the Software Development Life Cycle (SDLC), including architectural design. At this stage,
an LLM-based agent generates UML diagrams in PlantUML format by transforming user
requirements into an architectural representation. The authors also note that the generated UML
diagrams serve as a basis for subsequent code generation. This integration of PlantUML and LLMs
demonstrates the potential for an automated transition from requirements to technical implementation.

PROBLEM STATEMENT

Database schemas frequently have structural deficiencies such as the absence of foreign
keys, while available tools offer insufficient assistance to engineers in constructing consistent
and high-quality database models. The goal of this study is to develop an approach to restore

153

BKIBEPBE3INEKA: ocsita, Hayka, Textika Ne 1(29), 2025

CYBERSECURITY: ISSN 2663 - 4023
. EDUCATION, SCIENCE, TECHNIQUE

structural relationships between entities in SQL schemas in the absence of foreign keys or when
they are incomplete by using large language models (LLMs) and generating ER diagrams in
the PlantUML format.

RESULTS AND DISCUSSION

The study [15] analyzes the capabilities of PlantUML for creating ER diagrams and proposes
improvements for their quality and automation potential. The tool Sqglant [16] is introduced for
automatically generating PUML code from a PostgreSQL database, which significantly simplifies
schema construction. A PlantUML library for describing SQL entities [17] is proposed to improve
code readability and diagram maintainability. Furthermore, [15] outlines a sequence of steps
utilizing Sglant and PlantUML to automatically generate ER diagrams.

In this work, we extend the previously described workflow by adding an additional step
to interact with an LLM (Fig. 1), which is responsible for foreign key reconstruction. The
implementation relies on Sqlant version 0.5.0.

Reconstructing Entity Relationships with PlantUML, Sqlant and LLM

7 N\ ‘ sqlant ‘ LLM | 8 | plantuml.com

User db

| Execute sglant command. Example: | | i
. "sglant =<CON_STRING=> --legend” | X |

. Connect by <CON_STRING=

|
F

! Retrieve information about db schema

k.
v

I Generate PlantUML code : :

. PlantUML code

| Message contains generated PlantUML code and prompt

1 1 I

1 1 I

]]]]

PlantUML code with reconstructed relationships | |
]]

' PlantUML code

.
v

:_, Diagram image

N

db

P ‘ sqlant | ‘ LLM | 8 | plantuml.com

Fig. 1. Sequence diagram for reconstructing entity
relationships with PlantUML, Sglant, and LLMs

The authors created a unique database design in order to test the capability of an LLM to
restore foreign keys based on textual descriptions. The database contains 11 tables and 11 foreign
keys, as shown in Fig. 2. During the creation of the test database no open resources or LLMs were
used. This is important to ensure that the LLM has no prior knowledge about the database structure.
Otherwise, there is a risk that the LLM may simply reproduce already known templates.

154

K| BE pBE3 |_| E KA OCBITa, HayKa, TexHIkKa

CYBERSECURITY:

EDUCATION, SCIENCE, .TECHMQUE

Ne 1 (29), 2025

ISSN 2663 - 4023

hex_info speedinfo speedinfo_avg

distance_score id: vuid id: bigint id: bigint

id: bigint
s ~radio_compensation_id: bigint
« distance_from_validator: numeric
s score: double precision

« “radio_compensation_id: bigint .
s location: bigint « download_speed: numeric

e multiplier: real e latency: bigint

» points: real o timestamp: timestamp with time zone

radio_compensation_id: higint » ~radio_compensation_id: bigint

» download_speed: numeric

» latency: bigint

» timestamp: timestamp with time zone

W s rank: smallint « upload_speed: numeric » upload_speed: numeric
\i \j i
radio_compensation O—T
id: bigint hex_signal
« #radio_id: bigint id: bigint pifvacl o
th e« #signal_object_id: uuid oL L RLiGh vy
< P 5 5 _num: bigint « ~hex_num: bigint
: :?:g:z:ﬂ:?g};:?ré;;ms;igmi’i::irgort;;ms zone . signalinhjectilid:‘ uuid » pub_key: character varying
« propagation_points: numeric o dbm: double precision po———— g
distance multiplier: double precision
W

g I

signal_object 4
id: wuid hex_polygon
e ~radio_id: bigint hex_num: bigint
e ~signer_id: integer "
o created_at: timestamp with time zone w
« signal_object_claim_time: timestamp with time zone

W

signal_object_signer

id: bigint
« radio_key: character varying

name: character varying
pub_key: character varying

id: integer
o pub_key: character varying

Legend
Primary Key

Foreign Key
. Mandatory field (Not Null)
(E) Enum

Fig. 2. The initial database schema

Here “(PlantUML code)” refers to the PlantUML code of incomplete schema generated
by the Sglant.

All foreign keys have been removed to prepare input data for the LLM, which is shown
in Fig. 3. After data preparation was completed, the steps described in Fig. 1 were followed.
The text below shows how to locally install them.

hex_info

distance_score hex_signal

id: wuid

id: bigint hex_polygen id: bigint

o dbm: double precision
« hex_num: bigint

« signal_object_id: uuid

» location: bigint

o multiplier: real

« points: real

« radio_compensation_id: bigint
o rank: smal lint

hex_num: bigint
« polygon: polygon

« distance_from_validator: numeric
» radio_compensation_id: bigint
« score: double precision

radio_compensation

signal_object

radio id: bigint

id: bigint id: uid signal_object signer
« radio_key: character varying
name: character varying

pub_key: character varying

« compensation_date: timestamp with time zone
e created_at: timestamp with time zone
« propagation_points: numeric
s radio_id: bigint
» signal_object_id: uuid
distance_multiplier: double precision

id: integer
« pub_key: character varying

o created_at: timestamp with time zone

« radio_id: bigint

o signal_object_claim_time: timestamp with time zone
o signer_id: integer

speedinfo speedinfo_avg

id: bigint id: bigint wifi_radio

o download_speed: numeric

« latency: bigint

o radio_compensation_id: bigint

o timestamp: timestamp with time zone
o upload_speed: numeric

« download_speed: numeric

» latency: bigint

» radio_compensation_id: bigint

« timestamp: timestamp with time zone
« upload_speed: numeric

« hex_num: bigint
» pub_key: character varying

Fig. 3. Incomplete schema

155

Legend
£ Primary Key
Foreign Key
Mandatory field (Not Null)
Enum

(E)

KIBEPDH E3 [TEKA: OCBIiTa, Hayka, TexHika Ne 1 (29), 2025

CYBERSECURITY: ISSN 2663 - 4023
) EDUCATION, SCIENCE, TECHNIQUE

The PlantUML code of the incomplete schema was used as input for two LLMs:
ChatGPT-40 and Claude 3.7, for analysis. The input data contains the following information
about the database schema: table names, field names, field types, and primary keys. No data
examples or metadata were provided. The prompt is as follows:

This is PlantUML code that describes a DB schema (generated by the sqglant tool).

Add any potentially missing foreign keys to this code.

Use Information Engineering-style relationships in the format: <table name>
<type_of_relationship> <table_name>.

Insert them into the provided PlantUML code.
(PlantUML code)

The LLMs proposed a list of foreign keys between tables following the format provided
in the prompt. The ChatGPT-40 model successfully reconstructed all 11 foreign keys (Fig. 4),
but it failed to correctly identify the relationship types and labeled all of them as one-to-one.

- hex_info speedinfo speedinfo_avg
distance score id: uuid id: bigint id: bigint
id: bigint e location: bigint « download_speed: numeric » download_speed: numeric
e distance_from_validator: numeric e multiplier: real e latency: bigint « latency: bigint
e ~radio_compensation_id: bigint e points: real « ~radio_compensation_id: bigint « ~radio_compensation_id: bigint
e score: double precision e sradio_compensation_id: bigint o timestamp: timestamp with time zone « timestamp: timestamp with time zone
e rank: smallint » upload_speed: numeric » upload_speed: numeric

radio_compensation
id: bigint hex_signal = -
« compensation_date: timestamp with time zone id: bigint puiiRiagio
e created_at: timestamp with time zone s oy
= P : « dbm: double precision « ~hex_num: bigint
* prnpa_gat_mn_.po‘mts‘ numer1e o ~hex_num: bigint e pub_key: character varying
0 ik 2h [Eppie o ~signal_object_id: uuid 4
e ~signal_object_id: uuid | * “signal _object id:uuld
distance multiplier: double precision
signal_object
id: vuid hex_polygon
» created_at: timestamp with time zone hex_num: bigint
« sradio_id: bigint N
« signal_cbject_claim_time: timestamp with time zone w
e ~signer_id: integer

radio

1d: pigint signal_object_signer

« radio_key: character varying L i
name: character varying « pub_key: character varying
pub_key: character varying

Legend
Primary Key

Foreign Key
* Mandatory field (Not Null)
(E) Enum

Fig. 4. Foreign keys restored by ChatGPT-40

Claude 3.7 Sonnet produced results (Fig. 5) with foreign keys and relationship types that
matched the original database schema, regardless of the field order, which did not affect
correctness. Thus, Claude 3.7 Sonnet demonstrates the capability for logical analysis of a
database schema and the identification of hidden relationships without any prior information
about the specific schema.

156

KIBEPDH E3 [TEKA: OCBIiTa, Hayka, TexHika Ne 1 (29), 2025

CYBERSECURITY: ISSN 2663 - 4023
) EDUCATION, SCIENCE, TECHNIQUE

Probably, the key role in the restoration of relationships was played by the naming of
tables and fields. Due to the use of naming conventions (for example including suffixes "_id",
shared roots in field and table names) the LLM was able to identify semantic correspondences
between columns and tables.This indicates a high sensitivity of LLMs to linguistic patterns
embedded by developers during database design, and at the same time highlights the importance
of adhering to consistent naming conventions—particularly when designing database schemas
that should be understandable to both humans and machine learning models.

hex_info speedinfo speedinfo_avg
gistAncq score id: vuid id: bigint id: bigint
id: bigint PR 5 : 3 o
¢ location: bigint « download_speed: numeric « download_speed: numeric
» distance_from_validator: numeric « multiplier: real « latency: bigint « latency: bigint
« radio_compensation_id: bigint « points: real « radio_compensation_id: bigint « radio_compensation_id: bigint
« score: double precision « radio_compensation_id: bigint « timestamp: timestamp with time zone o timestamp: timestamp with time zone
W ¢ rank: smallint « upload _speed: numeric + upload_speed: numeric
\i \i V
radio_compensation O—T
id: bigint hex_signal
« compensation_date: timestamp with time zone id: bigint puiradio
t o created_at: timestamp with time zone s o~
i it] « dbm: double precision « hex_num: bigint
: g;:g:ggrzgﬁz;“ts‘ fnumeric « hex_num: bigint « pub_key: character varying
e signal object_id: uuid w><}7 g
distance_multiplier: double precision
v T I
signal_object
id: vuid hex_polygon
e created at: timestamp with time zone hex_num: bigint
e radio_id: bigint X
e signal_object_claim time: timestamp with time zone M
e signer_id: integer
\If W
radio I
B B signal_object_signer
e radio_key: character varying Lk STy
name: character varylng « pub_key: character varying
pub_key: character varying
Legend
Primary Key
Foreign Key
* Mandatory field (Not Null)
(E) Enum

This study demonstrates the potential of large language models (LLMs) for the automatic
reconstruction of structural relationships between entities in SQL database schemas where
foreign keys are missing or undefined. The proposed approach integrates with the ER diagram
generation process supported by the sglant tool and extends its functionality by involving an
LLM for semantic schema analysis.

The conducted experiment showed that even in the complete absence of explicitly defined
relationships, the LLMs were able to reconstruct them based solely on table structure, field
names, and logical correspondences. The ChatGPT-40 model successfully identified all 11
relationships but failed to correctly classify their types, assigning all of them as one-to-one. In
contrast, the Claude 3.7 Sonnet model not only identified all relationships but also correctly
determined their types, indicating higher accuracy in the context of this task.

Declaration on Generative Al: During the preparation of this work, the author used ChatGPT
in order to: Grammar and spelling check. After using this tool/service, the authors reviewed and
edited the content as necessary and take full responsibility for the publication’s content

157

ISE S

~

10.

11.

12.

13.

14.

15.

16.

17.

IKIBEPDH E3 [TEKA: OCBIiTa, Hayka, TexHika Ne 1 (29), 2025

CYBERSECURITY: ISSN 2663 - 4023
) EDUCATION, SCIENCE, TECHNIQUE

REFERENCES (TRANSLATED AND TRANSLITERATED)

OpenAl. GPT-4 Technical Report. OpenAl, arXiv:2303.08774 [cs.CL], 2024. doi:

10.48550/arXiv.2303.08774

Anthropic. Introducing Claude, 2023. URL.: https://www.anthropic.com/news/introducing-claude

Touvron, H., Lavril, T., lzacard, G., et al. LLaMA: Open and Efficient Foundation Language Models. Meta

Al, arXiv:2302.13971 [cs.CL], 2023. doi: 10.48550/arXiv.2302.13971

PlantUML, 2025. URL: https://plantuml.com/.

Mermaid | Diagramming and charting tool. 2025. URL: https://mermaid.js.org/

J. Romeo, M. Raglianti, C. Nagy and M. Lanza, "UML is Back. Or is it? Investigating the Past, Present,

and Future of UML in Open Source Software," in 2025 IEEE/ACM 47th International Conference

on Software Engineering (ICSE), Ottawa, ON, Canada, 2025, pp. 692-692, doi:

10.1109/ICSE55347.2025.00155.

Terrastruct, Text to diagram, 2025. URL: https://text-to-diagram.com/.

Feras A. Batarseh, Rasika Mohod, Abhinav Kumar, Justin Bui, 10 - The application of artificial intelligence

in software engineering: a review challenging conventional wisdom. Data Democracy (2020) 179-

232. doi: 10.1016/B978-0-12-818366-3.00010-1

Javier Camara, Javier Troya, Lola Burguefio, Antonio Vallecillo, On the assessment of generative Al in

modeling tasks: an experience report with ChatGPT and UML. Software and Systems Modeling 22 (2023),

781-793. doi: 10.1007/s10270-023-01105-5

D. Rouabhia, I. Hadjadj, Enhancing Class Diagram Dynamics: A Natural Language Approach with

ChatGPT, arXiv:2406.11002v1 [cs.SE], 2024. doi: 10.48550/arXiv.2406.11002.

Harer, Felix, Conceptual model interpreter for large language models. arXiv:2311.07605 [cs.SE], 2023.

doi:10.48550/arXiv.2311.07605.

Conrardy, Aaron, and Jordi Cabot, From image to uml: first results of image based uml diagram generation

using llms. arXiv:2404.11376 [cs.SE], 2024. doi:10.48550/arXiv.2404.11376

Hideyuki Kanuka, Genta Koreki, Ryo Soga, Kazu Nishikawa, Exploring the chatgpt approach for

bidirectional traceability problem between design models and code. arXiv:2309.14992, 2023. doi:

10.48550/arXiv.2309.14992

Malik Abdul Sami, Muhammad Waseem, Zeeshan Rasheed, Mika Saari, Kari Systd, Pekka Abrahamsson.

Experimenting with multi-agent software development: Towards a unified platform. arXiv:2406.05381,
2024. doi:10.48550/ar Xiv.2406.05381

O. Kurotych, L. V. Bulatetska, Optimizing the process of ER diagram creation with PlantUML, CEUR

Workshop Proceedings (2025) 47-57.

https://cssesw.easyscience.education/cssesw2024/CSSESW2024/paperl12.pdf

Kurotych, GitHub - kurotych/sqglant: Generate PlantUML/Mermaid ER diagram textual description from

SQL connection string, 2024. URL.: https://github.com/kurotych/sglant.

Kurotych, A. (2024). db_ent.puml — PlantUML library for database entities. GitHub. Retrieved April 23,

2025, from

https://github.com/kurotych/sqlant/blob/6¢c4a5030dfade0731b65e33f1b5f16595d0229¢0/puml-

lib/db_ent.puml

158

https://github.com/kurotych/sqlant/blob/6c4a5030dfade0731b65e33f1b5f16595d0229c0/puml-lib/db_ent.puml
https://github.com/kurotych/sqlant/blob/6c4a5030dfade0731b65e33f1b5f16595d0229c0/puml-lib/db_ent.puml

IKIBEPBEI3INTEKA: ocsita, Hayka, TexHika Ne1(29), 2025

CYBERSECURITY: ISSN 2663 - 4023
EDUCATION, SCIENCE, TECHNIQUE

Kyporuu Anaroaniii OsiekcaHapoBuY

CTYJCHT (akyabTeTy iHGOPMAIIHHAX TEXHOJIOTIH | MATEMATHKH

BonuHchkuit HarlioHaNBHUH YHiBepcuTeT iMeHi Jleci Ykpainku, JIynpk, Yipaina
ORCID ID: 0009-0006-8186-4063

akurotych@gmail.com

Byaareubka Jlecs BitagiiBaa

K. (.-M. H., JIOLIEHT, TOIEHT KadeapHu KOMIT FOTEpHUX HayK Ta KibepOesneku
BonuHchkuit HarlioHANBHUH YHiBepcuTteT iMeHi Jleci Ykpainku, JIynpk, Yipaina
ORCID ID: 0000-0002-7202-826X

Bulatetska.Lesya@vnu.edu.ua

Onuuryx Oxcana OnexkcanapiBHa

K.T.H., IOIIEHT, JOLEHT Kadeapu KOMIT I0TEPHUX HAaYK Ta KibepOe3rneKu
BonuHchkuii HallioHanbHUH yHiBepcuTeT imMeHi Jleci Ykpainku, JIyipk, Ykpaina
ORCID ID: 0000-0002-8342-3011

Onyshchuk.Oksana@vnu.edu.ua

BIIHOBJIEHHA 3B’A3KIB MI’K CYTHOCTSIMH
B CXEMAX BA3 TAHUX 3A JOIIOMOI'OIO PLANTUML TA LLM

AHoTanif. Y poOoTi IOCHIIKYIOThCS MEPCIEKTUBH BUKOPUCTAHHS BEJIMKHX MOBHHX MOJIEINEH
(LLMS) st aBTOMAaTHYHOTO BiAHOBJEHHsS 3B’sA3KiB MK Tabmuisamu B SQL-0azax maHux 3
HETIOBHICTIO BU3HAYEHUMH 30BHILIHIMHM Kitodyamu. [lnsi owiHku crpomoxsHocti LLM-mozeni
BIJITBOPIOBATH 30BHIIIIHI KJIFOUl HA OCHOBI TEKCTOBOTO OIUCY CTPYKTYpH TabHLb Oyia copmoBana
eKCliepUMeHTalbHa Oa3a jaHux. Cxema 0a3u naHumx Oe3 3B’s3KiB Oysa MojaHa Ha BXill JABOM
BenmMKUM MoBHUM Mozeisim ChatGPT-40 ta Claude 3.7 Sonnet. st ananizy LLMS 6ymo Hagano
nume 0a3oBy iH(GOpPMAILiIO: HA3BU TaONWIb, HA3BM IIOJIB 1 MEPBUHHI K04l — O€3 KOAHUX
npukiaie ganux. Momens ChatGPT-40 ycminHo BHUABHMIIA BCi 3B SM3KH MiX TaOIMIUIMH, MPOTE
NPOJEMOHCTPYBaJIa OOMEKEHHS Y BU3HAYCHHI THITIB LIMX 3B’SI3KIB: yci BOHH OyiM KiacudikoBaHi
K «OIMH JI0 OXHOT0», HE3AJISKHO Bim iX (akThuHOl mpupoiu. Lle cBiIYMTH Ipo HEJOCTaTHIO
3JIATHICTh MOJIEJi TOYHO IHTEPIPETYBATH CEMaHTHUKY PENALiHHUX 3B’S3KiB HA OCHOBI TEKCTOBOTO
onmcy. Haromicts momens Claude 3.7 Sonnet we sumie xopekTHO imeHTH(IKyBana BCi HasBHI
3B’SI3KH, a I MPaBUIBFHO BHU3HAUMWIA IX THIHN (HATIPUKIIAA, «OOUH OO 0araTbox»), M0 AEMOHCTPYE
BHUIIY TOYHICTH 1 TIIMOIIE PO3YMIHHSI CTPYKTYpH 0a3M JaHHX Y paMKax IOCTaBJICHOTO 3aBIaHHSI.
Omc cTpyKTypH TabJIHIb TOJaBaBCsi MOBHUM MozemsiMm y ¢opmari PlantUML, 1o 3a6e3meunio
CTaHJApPTU30BaHe, YiTKe Ta OAHO3HAYHE IPEICTABICHHS BXIIHUX NaHUX I 00poOku. Ha ocHOBI
pe3yabTaTiB MoAetoBaHHSA Oymu moOymoBani ER-miarpamm Takoxk y ¢dopmati PlantUML.
ExcniepumenT miarBepmkye epextuBHicTs LLMS y pekoHCTpYKIT BiICYTHIX 30BHILIHIX KIIOYIB Ta
JEMOHCTPY€E iXHIA MMOTEHI[ia ISl aBTOMATH30BAHOTO aHAII3Y, HOKYMEHTamii Ta BIOCKOHAJICHHS
HasBHUX 0a3 maHux. JJoTpruMaHHS MOCiTOBHIX IPaBWII IMEHYBAHHS ITiJ] 9aC MPOEKTYBAHHS CXEMH
CYTTEBO CIIPOIIYE SIK pOOOTY PO3POOHUKIB, TaK 1 aBTOMATH30BaHy 0OpPOOKY CTPYKTYp 0a3 JaHux
IHTETIeKTYaIbHUMH CHCTEMaMHU, BiAITpalovH KIFOYOBY POJb Y IUX MPOIECax.

Kuarouogi cioBa: ERD-miarpama; PlantUML; aBromartusartist; pesstitiitai 6a3u JaHuX; BETHKI MOBHI
mogeni (LLMs); ChatGPT-40; Claude 3.7.

CIIMCOK BUKOPUCTAHUX JT’KEPEJI

1. OpenAl. GPT-4 Technical Report. OpenAl, arXiv:2303.08774 [cs.CL], 2024. doi:
10.48550/ar Xiv.2303.08774
2. Anthropic. Introducing Claude, 2023. URL: https://www.anthropic.com/news/introducing-claude
3. Touvron, H., Lavril, T., lzacard, G., et al. LLaMA: Open and Efficient Foundation Language Models.
Meta Al, arXiv:2302.13971 [cs.CL], 2023. doi: 10.48550/arXiv.2302.13971
PlantUML, 2025. URL.: https://plantuml.com/.
Mermaid | Diagramming and charting tool. 2025. URL: https://mermaid.js.org/

o s

159

10.

11.

12.

13.

14.

15.

16.

17.

AKIBEPBEI3INTEKA: ocaira, HayKka, TexHiKa Ne 1 (29), 2025

CYBERSECURITY: ISSN 2663 - 4023
EDUCATION, SCIENCE, TECHNIQUE

J. Romeo, M. Raglianti, C. Nagy and M. Lanza, "UML is Back. Or is it? Investigating the Past, Present,

and Future of UML in Open Source Software," in 2025 IEEE/ACM 47th International Conference

on Software Engineering (ICSE), Ottawa, ON, Canada, 2025, pp. 692-692, doi:

10.1109/ICSE55347.2025.00155.

Terrastruct, Text to diagram, 2025. URL: https://text-to-diagram.com/.

Feras A. Batarseh, Rasika Mohod, Abhinav Kumar, Justin Bui, 10 - The application of artificial intelligence

in software engineering: a review challenging conventional wisdom. Data Democracy (2020) 179-

232. doi: 10.1016/B978-0-12-818366-3.00010-1

Javier Camara, Javier Troya, Lola Burguefio, Antonio Vallecillo, On the assessment of generative Al in

modeling tasks: an experience report with ChatGPT and UML. Software and Systems Modeling 22 (2023),

781-793. doi: 10.1007/s10270-023-01105-5

D. Rouabhia, I. Hadjadj, Enhancing Class Diagram Dynamics: A Natural Language Approach with

ChatGPT, arXiv:2406.11002v1 [cs.SE], 2024. doi: 10.48550/arXiv.2406.11002.

Harer, Felix, Conceptual model interpreter for large language models. arXiv:2311.07605 [cs.SE], 2023.

doi:10.48550/arXiv.2311.07605.

Conrardy, Aaron, and Jordi Cabot, From image to uml: first results of image based uml diagram generation

using llms. arXiv:2404.11376 [cs.SE], 2024. doi:10.48550/arXiv.2404.11376

Hideyuki Kanuka, Genta Koreki, Ryo Soga, Kazu Nishikawa, Exploring the chatgpt approach for

bidirectional traceability problem between design models and code. arXiv:2309.14992, 2023. doi:

10.48550/arXiv.2309.14992

Malik Abdul Sami, Muhammad Waseem, Zeeshan Rasheed, Mika Saari, Kari Systa, Pekka Abrahamsson.

Experimenting with multi-agent software development: Towards a unified platform. arXiv:2406.05381,
2024. doi:10.48550/arXiv.2406.05381

O. Kurotych, L. V. Bulatetska, Optimizing the process of ER diagram creation with PlantUML, CEUR

Workshop Proceedings (2025) 47-57.

https://cssesw.easyscience.education/cssesw2024/CSSESW2024/paper12.pdf

Kurotych, GitHub - kurotych/sqlant: Generate PlantUML/Mermaid ER diagram textual description from

SQL connection string, 2024. URL.: https://github.com/kurotych/sglant.

Kurotych, A. (2024). db_ent.puml — PlantUML library for database entities. GitHub. Retrieved April 23,

2025, from

https://github.com/kurotych/sglant/blob/6¢c4a5030dfade0731b65e33f1b5f16595d0229¢0/puml-

lib/db_ent.puml

This work is licensed under Creative Commons Attribution-noncommercial-sharealike 4.0 International License.

160

http://creativecommons.org/licenses/by-nc-sa/4.0/

