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ANOMALY DETECTION IN ENCRYPTED  

NETWORK TRAFFIC USING DEEP LEARNING 

Abstract. The increasing dominance of encrypted traffic in modern network communications poses 

significant challenges to cybersecurity monitoring, especially for traditional intrusion detection systems that 

rely on packet content inspection. This study addresses the problem of anomaly detection in encrypted traffic 

using deep learning approaches that analyze metadata without requiring decryption. A comprehensive 

experimental comparison of three architectures — Autoencoder, CNN+LSTM, and ET SSL (a contrastive 

self-supervised learning model) — was performed using three publicly available datasets: CIC-

Darknet2020, UNSW-NB15, and QUIC-TLS, each representing diverse encrypted protocols and attack 

types. All datasets were preprocessed into flow-based formats with 75 standardized numerical features. The 

models were evaluated based on classification accuracy, F1 score, and false positive rate (FPR). The ET 

SSL model demonstrated the most consistent and superior performance, achieving up to 96.8% accuracy 

and 0.961 F1 score, with an FPR as low as 1.2%. CNN+LSTM achieved slightly lower but still competitive 

results, while the Autoencoder model exhibited limitations in adapting to high-level traffic obfuscation, 

especially in QUIC-based flows. Additionally, a hyperparameter sensitivity analysis was conducted to 

explore the influence of learning rate, time window size, and dropout regularization. The findings confirmed 

the critical role of adaptive configuration in optimizing model performance for specific deployment 

environments. For instance, lowering the learning rate improved accuracy but increased training time, while 

extending the temporal window improved F1 at the cost of computational overhead. The empirical results 

substantiate the practical applicability of deep learning models for encrypted traffic monitoring without 

decryption. In particular, the ET SSL architecture stands out as a promising candidate for deployment in 

real-time threat detection systems due to its robustness, high generalization capability, and low false positive 

rate. Furthermore, its reliance on self-supervised learning allows for effective operation in scenarios with 

limited or no labeled data, making it especially suitable for detecting zero-day attacks. Future research 

directions include expanding the diversity of training datasets to reflect evolving encryption standards (e.g., 

Encrypted SNI, DoQ), integrating detection models into scalable, low-latency IDS/IPS environments, 

applying explainable AI (XAI) methods to increase trust and interpretability, and developing adversarially 

robust models. The presented findings serve as a foundation for the development of next-generation, 

adaptive, and context-aware cyber threat monitoring systems. 

Keywords: encrypted traffic; anomaly detection; deep learning; self-supervised learning; 

cybersecurity; ET SSL; CNN+LSTM; autoencoder; QUIC; zero-day attacks. 

INTRODUCTION 

In the modern context of rapid digital technology development and widespread 

implementation of encryption protocols (such as TLS, VPN, HTTPS, QUIC), the task of 

monitoring network traffic for cybersecurity purposes has become significantly more complex. 
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Traditional intrusion detection tools based on deep packet inspection are losing their 

effectiveness, as the content of most communications is rendered inaccessible due to 

cryptographic protection. In this context, anomaly detection — identifying unusual or 

suspicious patterns in network traffic behavior — becomes a vital tool in combating 

cyberattacks, particularly zero-day attacks, malicious botnets, and advanced persistent threats 

[1, p. 407–414]. 

The growing volume of encrypted traffic within overall data flows is a statistically 

confirmed trend. According to the Google Transparency Report, as of 2024, over 95% of web 

traffic transmitted through Chrome browsers worldwide is encrypted. Similar figures are 

reported by telecommunications network operators, including the CESNET research group, 

which demonstrates the significant dominance of TLS and QUIC protocols in public datasets 

of user internet activity. While encryption enhances the confidentiality of data exchange, it also 

complicates traffic analysis, as security systems are limited to analyzing metadata without 

access to the content of transmitted packets. 

Given these limitations, the scientific community is actively seeking new approaches to 

traffic analysis that do not require decryption. Among the most promising are deep learning 

methods. These techniques are capable of modeling complex, non-linear relationships between 

various traffic parameters, including time intervals, packet size sequences, flow direction, 

transmission intensity, and session frequency [9, p. 99–124]. Deep neural architectures such as 

autoencoders, convolutional neural networks, recurrent networks, and contrastive self-

supervised learning models have demonstrated strong capabilities in detecting abnormal 

behavior even under conditions of limited or entirely absent labeled data. This is particularly 

relevant in real-world traffic scenarios, where obtaining high-quality labels is labor-intensive 

and time-consuming. 

Special attention in the development and evaluation of such models is given to the use of 

high-quality open datasets containing both normal and anomalous encrypted traffic. Among the 

most commonly used datasets are CIC-Darknet2020, ISCXVPN2016, UNSW-NB15, QUIC-

TLS, and CESNET-Traffic. These datasets provide a broad range of realistic scenarios covering 

various types of user activity, protocol characteristics, and network load patterns. They enable 

not only effective model training but also objective evaluation of their generalization 

capabilities in new and unpredictable conditions. 

The relevance of this research lies in the urgent need to develop technologies capable of 

detecting threats in fully or partially opaque network communications. The ability of such 

systems to adapt to the ever-changing and dynamic cyber threat landscape is becoming a key 

factor in the overall effectiveness of network defense mechanisms. This study focuses on 

exploring the potential of deep learning for analyzing encrypted traffic, evaluating its 

effectiveness, resilience to new types of attacks, and the practical feasibility of deploying such 

models into real-time systems. The results obtained could serve as a foundation for building 

adaptive intelligent monitoring systems capable of operating in high-load, encrypted network 

environments without loss of threat sensitivity and with minimal false-positive rates. 

THEORETICAL RESEARCH 

The problem of anomaly detection in encrypted network traffic is increasingly being 

addressed in contemporary scientific research. With the growing proportion of traffic transmitted 

through encrypted protocols such as TLS, HTTPS, VPN, and QUIC, traditional security control 

tools based on deep packet inspection are losing their effectiveness. In situations where access to 
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data content is technically or legally impossible, the focus shifts to analyzing metadata — 

characteristics that describe flow behavior, such as packet size and inter-arrival times, transmission 

direction, connection duration, and statistical session-level aggregates. 

In response to these challenges, there is a growing interest in the application of machine 

learning and deep learning methods, which demonstrate a high capacity for detecting deviations 

from normal behavior without requiring access to the content of transmitted data. In the early 

stages of development in this field, classical machine learning algorithms were used, including 

decision trees, random forest, support vector machines, and gradient boosting algorithms[10]. 

These approaches made it possible to achieve acceptable results in traffic classification tasks 

based on aggregated flow features [11, p. 19–23]. For example, studies based on datasets such 

as CICIDS2017 and ISCXVPN2016 reported accuracy levels exceeding 90% when using 

ensemble classifiers [2, p. 77–78]. However, their application came with limitations — 

primarily due to the need for manual feature selection, low contextual sensitivity, and limited 

generalization capability when the network environment changed. 

A significant breakthrough came with the advent of neural architectures, which allowed for 

automatic feature extraction from data and the modeling of complex nonlinear relationships 

between traffic parameters. One of the first approaches involved autoencoders — neural networks 

capable of learning a compressed representation of normal network behavior and detecting 

anomalies based on deviations from that pattern. In a study based on the CIC-Darknet2020 dataset, 

autoencoders achieved over 99.99% accuracy in detecting anomalies in encrypted traffic [3]. 

Another study that applied deep autoencoder architectures to SSL sessions reported F1 scores 

around 95% without using any information about the transmitted content [4, p. 1792–1806]. 

Further research has focused on the use of convolutional and recurrent neural networks. 

CNN models have proven effective in working with encrypted flows where features can be 

represented as vectors or matrices with temporal or statistical characteristics. These models 

have demonstrated the ability to detect local anomalous patterns in traffic — such as sequences 

of specific packet sizes or characteristic timing delays. On the other hand, LSTM models have 

enabled the analysis of long-term dependencies between events in a network session, providing 

higher sensitivity to the complex dynamics of traffic [5]. 

It is also worth noting the promise of hybrid architectures that combine the strengths of 

CNN and LSTM. Such solutions have been implemented in several recent works, notably in 

the HyperVision system, which successfully operates in real time with throughput exceeding 

80 Gb/s, while maintaining an AUC above 0.92 even in cases of zero-day attacks [6]. 

A recent research direction is the application of self-supervised learning approaches, 

particularly contrastive learning, which enables the construction of effective data representations 

without the need for manual labeling. The ET-SSL system, proposed by Sattar et al. (2025), is a 

vivid example of such an approach: it was trained on a set of real encrypted traffic from the CIC-

Darknet2020, UNSW-NB15, and QUIC-TLS datasets, achieving an accuracy of 96.8%, TPR of 

92.7%, and FPR of only 1.2% with low latency (<25 ms) [6], [7]. This model demonstrates high 

generalization ability, resilience to changes in the network landscape, and suitability for deployment 

in real-time systems without the need to access the content of the data. 

RESEARCH RESULTS 

As part of this study, a comprehensive comparison was conducted between three deep 

learning-based approaches to anomaly detection in encrypted network traffic. All models are 

designed to analyze metadata of network flows without accessing packet content. To ensure 
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objectivity and generalizability of conclusions, experiments were carried out on three public 

datasets: CIC-Darknet2020, UNSW-NB15, and QUIC-TLS, each representing different types 

of encrypted traffic and attack scenarios. 

CIC-Darknet2020 is a dataset containing 141,000 sessions, including connections via 

Tor, VPN, DoH, and typical encrypted DDoS attacks [12, p. 253–256]. UNSW-NB15 includes 

over 2.5 million records of both normal and malicious traffic from a corporate network [8, p. 1–

6]. QUIC-TLS is a modern dataset of encrypted UDP traffic collected based on HTTP/3 

interactions, incorporating zero-day C2C-class attacks and DNS-over-QUIC traffic. Each 

dataset was transformed into a flow-based format, followed by a unified feature transformation 

into 75 numerical parameters, including: Flow Duration, Total Fwd Packets, Total Backward 

Packets, Fwd Packet Length Mean, Flow Bytes/s, Idle Mean, Subflow Fwd Bytes, and others. 

The data were cleaned of duplicates, normalized using Z-score, and scaled to a consistent range. 

The Autoencoder model was implemented as a symmetric deep neural network with three 

layers in both encoder and decoder (sizes: 128-64-32-64-128). Mean squared error was used as 

the loss function, with ReLU as the activation function. The model was trained on clean normal 

traffic, and anomalies were detected by comparing the reconstruction error to a threshold value 

calculated based on the empirical 95th percentile. 

The CNN+LSTM model includes two convolutional layers with 3 on 1 filters and a stride 

of 1, followed by an LSTM layer with 64 neurons. The dropout rate was set to 0.3, and 

optimization was performed using the Adam algorithm with an initial learning rate of 0.001. 

This architecture allows for the detection of local spatial dependencies in flows while 

simultaneously accounting for their temporal structure. 

The ET SSL model, proposed in [13], is based on contrastive self-supervised learning 

mechanisms without labeled data. During training, positive and negative flow pairs are 

generated and passed through a multilayer neural network (256-128-64). The contrastive loss 

function optimizes the latent space representation such that similar pairs are brought closer 

together and dissimilar ones are pushed farther apart. After training, DBSCAN clustering is 

applied to the latent vectors; flows that do not belong to any cluster are labeled as anomalous. 

To objectively evaluate the models, classification accuracy, false positive rate, and F1 score 

metrics were applied — the latter being particularly relevant under significant class imbalance 

conditions. To ensure a fair and comprehensive evaluation of model performance, three core 

metrics were used: classification accuracy (Accuracy), F1 score, and false positive rate (FPR). 

These metrics provide a balanced assessment of anomaly detection effectiveness, generalization 

ability, and practical deployment viability. All results were obtained using 5-fold cross-validation 

with an 80/20 train-test split on each dataset. During each fold, models were trained on the training 

subset and evaluated on a held-out test set, with final scores averaged across all folds. Accuracy 

was calculated as the ratio of correctly classified flows to the total number of flows in the test set. 

The F1 score was computed as the harmonic mean of precision and recall, which is particularly 

important under conditions of class imbalance. The FPR was defined as the proportion of benign 

flows incorrectly classified as anomalous (i.e., FP / (FP + TN)). For the Autoencoder model, the 

anomaly threshold was derived empirically as the 95th percentile of reconstruction error values 

observed on the clean training data consisting solely of normal traffic. 

Table 1 presents the computed values of the three core metrics for all models and datasets. 

The ET SSL model achieved the highest accuracy: 96.8% on CIC-Darknet2020, 96.3% on UNSW-

NB15, and 95.8% on QUIC-TLS. In comparison, CNN+LSTM showed accuracies of 96.7%, 

94.8%, and 94.0% respectively, while the Autoencoder model performed less effectively, 

particularly on QUIC-TLS, where its accuracy dropped to 91.8%. In terms of F1 score, ET SSL 
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consistently outperformed competitors, achieving 0.961 (CIC), 0.957 (UNSW), and 0.951 (QUIC), 

which is 1–3 percentage points higher than the nearest alternative [15,p. 78–82]. 

 

Table 1 

Accuracy, F1 Score, and FPR of the Models on Three Encrypted Datasets 
Model CIC-Darknet2020 UNSW-NB15 QUIC-TLS 

 Accuracy F1 Accuracy 

Autoencoder 95.0 % 0.944 93.2 % 

CNN+LSTM 96.7 % 0.956 94.8 % 

ET SSL 96.8 % 0.961 96.3 % 

 

A key component of the experimental analysis is the comprehensive comparison of model 

performance across three main metrics: classification accuracy (Accuracy), F1 score, and false 

positive rate (FPR). This approach provides a well-rounded evaluation of the overall 

effectiveness of anomaly detection, the models’ generalization capabilities, and their practical 

applicability in real-world deployment scenarios[14]. 

At the initial stage, classification accuracy was analyzed, representing the proportion of 

correctly classified flows in the test set. As shown in Fig. 1, the ET SSL model achieved the 

highest accuracy: 96.8% on the CIC-Darknet2020 dataset, 96.3% on UNSW-NB15, and 95.8% 

on QUIC-TLS [16, p. 87]. 

 

 
Fig. 1. Accuracy of Autoencoder, CNN+LSTM, and ET-SSL Models on Three Datasets 

 

These values are the highest among all compared approaches. CNN+LSTM recorded 

similar, though slightly lower results — 96.7%, 94.8%, and 94.0%, respectively. In contrast, 

the Autoencoder proved to be the least accurate, particularly when processing QUIC traffic, 

where accuracy dropped to 91.8%. This may be attributed to the limited adaptability of the 

unsupervised approach to high-level traffic obfuscation. 

In the second stage, the F1 score was analyzed. Unlike simple accuracy, the F1 score 

provides a balance between precision and recall, which is critically important in tasks involving 

class imbalance. As shown in Fig. 2, the ET SSL model once again confirms its superiority, 

achieving F1 scores of 0.961 on CIC-Darknet2020, 0.957 on UNSW-NB15, and 0.951 on 

QUIC-TLS [17, p. 231–233]. 
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Fig. 2. F1 Score of Autoencoder, CNN+LSTM, and ET-SSL Models on Three Datasets 

 

These indicators exceed the results of CNN+LSTM by 1–2 percentage points and 

significantly outperform the Autoencoder, which demonstrates F1 scores in the range of 0.912–

0.944. This indicates the limited ability of the latter to adequately detect both positive and 

negative samples under encryption conditions [18, p. 46–48]. 

The third and highly important aspect is the false positive rate (FPR), which directly 

affects the operational value of the models. High FPR values lead to a large number of false 

alerts, potentially overloading the security analytics infrastructure and reducing trust in the 

system. Fig. 3 presents a comparison of FPR across all models. 

 

 
Fig. 3. False Positive Rate (FPR) of Autoencoder, CNN+LSTM, and ET-SSL Models 

 

ET SSL once again demonstrates the lowest false positive rates: only 1.2% on CIC, 1.7% 

on UNSW, and 2.0% on QUIC-TLS. For comparison, CNN+LSTM falls within the 2.2–3.1% 

range, while the Autoencoder records critically high values — up to 5.3% on QUIC-TLS, 

making it virtually unsuitable for real-world deployment in a production environment. 

INTERPRETATION OF RESULTS 

The empirically validated results of anomaly detection in encrypted network traffic not 

only formalize the statistical success of the applied models but also provide a solid foundation 

for extrapolating their practical potential in real-world information and communication 

systems. The consistent classification accuracy exceeding 95% indicates the ability of modern 
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deep learning architectures to correctly differentiate network flows even without access to the 

content of transmitted packets — a fundamental limitation in the context of encryption. 

Particular attention should be paid to the false positive rate (FPR), which is traditionally 

considered a critical parameter for real-time threat detection systems. In this regard, the ET SSL 

model demonstrates exceptionally low FPR values (<2% across all datasets), significantly 

reducing the risk of overloading alerting infrastructure and lowering the cognitive burden on 

human operators. Thus, the practical relevance of the ET SSL architecture in scalable 

environments is supported not only by its high accuracy but also by its efficiency in response 

resource utilization. 

From an architectural innovation perspective, the ET SSL model, based on the concept of 

contrastive self-supervised learning, shows a remarkable ability to construct generalized latent 

spaces in which atypical samples can be heuristically distinguished. This approach does not rely 

heavily on prior data labeling, opening new opportunities for application in zero-day detection 

tasks — one of the most pressing challenges in modern cybersecurity. Therefore, the presented 

results justify interpreting the ET SSL model as a methodologically sound platform for 

developing adaptive, context-aware next-generation threat detection systems. 

HYPERPARAMETER SENSITIVITY ANALYSIS 

To assess the impact of key hyperparameters on model performance, a series of targeted 

experiments was conducted, focusing on variations in learning rate, time window size, and the 

Dropout regularization parameter. The analysis of the results made it possible to identify 

configurations that offer an optimal trade-off between classification accuracy, convergence 

speed, and computational complexity. 

For the CNN+LSTM model, it was found that reducing the learning rate from 0.001 to 

0.0005 improves classification accuracy by 0.8% (up to 97.5% on CIC-Darknet2020), although 

it also increases training time by approximately 40%. Further reduction of the learning rate 

below 0.0001 results in excessively slow convergence and a decline in the F1 score. Increasing 

the window size from 20 to 50 allows the model to capture longer temporal contexts, which 

positively impacts the F1 score (by up to +1.1%), though it also raises the resource intensity of 

processing. Meanwhile, increasing the Dropout rate from 0.3 to 0.5 leads to a decrease in 

accuracy (-0.8%), indicating loss of relevant information due to excessive regularization. 

 

Table 2 

Impact of Hyperparameters on CNN+LSTM Accuracy 
Parameter Value Accuracy (%) 

Learning rate 0.001 96.7 

Learning rate 0.0005 97.5 

Window size 20 96.7 

Window size 50 97.8 

Dropout 0.3 96.7 

Dropout 0.5 95.9 

 

Regarding the Autoencoder model, experiments revealed its sensitivity to architectural 

depth. Shallower configurations (64-32-16) offer faster training speeds but are less accurate (by 

1.5–2%), whereas deeper architectures (256-128-64) yield higher performance but tend to 

overfit on smaller datasets. This necessitates the use of regularization techniques in combination 

with validated parameter selection methods such as grid search or Bayesian optimization. 
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Overall, the results of the hyperparameter sensitivity analysis confirm the importance of 

environment-specific adaptive tuning. Using static configurations without empirical validation 

may lead to inefficient resource usage or reduced threat detection performance in dynamic 

network conditions. 

CONCLUSIONS AND FUTURE RESEARCH DIRECTIONS 

As a result of the conducted study, it was established that modern deep learning-based 

approaches to anomaly detection in encrypted network traffic demonstrate high effectiveness 

even under conditions of limited access to the content of transmitted data. Among the tested 

models, the best performance was demonstrated by the ET SSL architecture, based on 

contrastive self-supervised learning mechanisms. It achieved the highest classification accuracy 

(up to 96.8%), F1 scores (up to 0.961), and the lowest false positive rate (as low as 1.2%). 

The hyperparameter sensitivity analysis confirmed the importance of adaptive tuning of 

models to specific deployment environments. It was found that even small changes in window 

size, learning rate, or regularization level can significantly affect both classification accuracy 

and training convergence speed. 

Thus, the results of this study support the feasibility of using deep neural networks for 

encrypted traffic threat detection without decryption, opening up new prospects for the 

development of next-generation intelligent cyber threat monitoring systems. 

Future research directions include: 

– Expanding the training base through new open datasets that cover modern 

encryption protocols (e.g., Encrypted SNI, DoQ, etc.); 

– Integrating models into real-time IDS/IPS systems, ensuring scalability and low 

processing latency; 

– Exploring explainable AI approaches to improve the transparency of model 

decision-making; 

– Developing federated learning techniques to enhance privacy while maintaining 

model effectiveness in distributed networks; 

– Adapting detection systems to adversarial attacks and developing defense 

mechanisms against them. 

Overall, the obtained results can serve as a foundation for building adaptive, robust, and 

transparent threat detection systems suited for today’s increasingly encrypted network 

environments. 
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ВИЯВЛЕННЯ АНОМАЛІЙ У ЗАШИФРОВАНОМУ  

МЕРЕЖЕВОМУ ТРАФІКУ ЗА ДОПОМОГОЮ ГЛИБОКОГО НАВЧАННЯ 

Анотація. Зростання частки зашифрованого трафіку в сучасних мережевих комунікаціях створює 

суттєві труднощі для кібербезпеки, особливо для традиційних систем виявлення вторгнень, що 

базуються на аналізі вмісту пакетів. У цьому дослідженні розглянуто проблему виявлення аномалій 

у зашифрованому мережевому трафіку за допомогою методів глибокого навчання, які аналізують 

метадані без необхідності розшифровування. Проведено комплексне експериментальне порівняння 

трьох архітектур — Autoencoder, CNN+LSTM та ET SSL (модель контрастного 

самоконтрольованого навчання) — з використанням трьох відкритих наборів даних: CIC-

Darknet2020, UNSW-NB15 та QUIC-TLS, які охоплюють різноманітні типи зашифрованих 

протоколів і атак. Усі набори даних було попередньо оброблено до формату потоків (flows) із 75 

стандартизованими числовими ознаками. Оцінка моделей виконувалася за точністю класифікації, 

F1-мірою та частотою хибнопозитивних спрацьовувань (FPR). Модель ET SSL показала найбільш 

стабільні та найкращі результати, досягнувши точності до 96,8%, F1-міри 0,961 та низького FPR — 

лише 1,2%. CNN+LSTM продемонструвала дещо нижчі, але конкурентні результати, тоді як модель 

Autoencoder виявила обмеження у здатності адаптуватися до високого рівня обфускації трафіку, 

особливо для потоків на основі протоколу QUIC. Крім того, було проведено аналіз чутливості 

гіперпараметрів, зокрема вивчався вплив швидкості навчання, розміру часового вікна та 

регуляризації dropout. Отримані результати підтвердили важливу роль адаптивного налаштування 

моделей для оптимізації їхньої продуктивності у конкретних умовах застосування. Наприклад, 

зменшення швидкості навчання покращувало точність, проте збільшувало час навчання, а 

подовження часового вікна покращувало F1-міру за рахунок підвищених обчислювальних витрат. 

Експериментальні результати підтверджують практичну доцільність застосування моделей 

глибокого навчання для моніторингу зашифрованого трафіку без необхідності його 

розшифровування. Особливо перспективною є архітектура ET SSL, що може бути використана у 

системах виявлення загроз у режимі реального часу завдяки своїй стійкості, високій здатності до 

узагальнення та низькій частоті хибнопозитивних результатів. Крім того, її здатність працювати в 

умовах обмеженої кількості розмічених даних або взагалі без них завдяки самоконтрольованому 

навчанню робить її особливо придатною для виявлення атак нульового дня. Майбутні напрямки 

досліджень включають розширення різноманітності навчальних наборів даних з урахуванням нових 

стандартів шифрування (наприклад, Encrypted SNI, DoQ), інтеграцію моделей у масштабовані 

середовища IDS/IPS з низькою затримкою, застосування методів пояснюваного штучного інтелекту 

(XAI) для підвищення довіри та прозорості, а також створення моделей, стійких до протидії 

супротивника. Представлені результати є основою для створення наступного покоління адаптивних 

і контекстно-орієнтованих систем моніторингу кіберзагроз. 

Ключові слова: зашифрований трафік; виявлення аномалій; глибоке навчання; самоконтрольоване 

навчання; кібербезпека; ET SSL; CNN+LSTM; автокодер; QUIC; атаки «нульового дня». 
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