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ANOMALY DETECTION IN ENCRYPTED
NETWORK TRAFFIC USING DEEP LEARNING

Abstract. The increasing dominance of encrypted traffic in modern network communications poses
significant challenges to cybersecurity monitoring, especially for traditional intrusion detection systems that
rely on packet content inspection. This study addresses the problem of anomaly detection in encrypted traffic
using deep learning approaches that analyze metadata without requiring decryption. A comprehensive
experimental comparison of three architectures — Autoencoder, CNN+LSTM, and ET SSL (a contrastive
self-supervised learning model) — was performed using three publicly available datasets: CIC-
Darknet2020, UNSW-NB15, and QUIC-TLS, each representing diverse encrypted protocols and attack
types. All datasets were preprocessed into flow-based formats with 75 standardized numerical features. The
models were evaluated based on classification accuracy, F1 score, and false positive rate (FPR). The ET
SSL model demonstrated the most consistent and superior performance, achieving up to 96.8% accuracy
and 0.961 F1 score, with an FPR as low as 1.2%. CNN+LSTM achieved slightly lower but still competitive
results, while the Autoencoder model exhibited limitations in adapting to high-level traffic obfuscation,
especially in QUIC-based flows. Additionally, a hyperparameter sensitivity analysis was conducted to
explore the influence of learning rate, time window size, and dropout regularization. The findings confirmed
the critical role of adaptive configuration in optimizing model performance for specific deployment
environments. For instance, lowering the learning rate improved accuracy but increased training time, while
extending the temporal window improved F1 at the cost of computational overhead. The empirical results
substantiate the practical applicability of deep learning models for encrypted traffic monitoring without
decryption. In particular, the ET SSL architecture stands out as a promising candidate for deployment in
real-time threat detection systems due to its robustness, high generalization capability, and low false positive
rate. Furthermore, its reliance on self-supervised learning allows for effective operation in scenarios with
limited or no labeled data, making it especially suitable for detecting zero-day attacks. Future research
directions include expanding the diversity of training datasets to reflect evolving encryption standards (e.g.,
Encrypted SNI, DoQ), integrating detection models into scalable, low-latency IDS/IPS environments,
applying explainable Al (XAI) methods to increase trust and interpretability, and developing adversarially
robust models. The presented findings serve as a foundation for the development of next-generation,
adaptive, and context-aware cyber threat monitoring systems.

Keywords: encrypted traffic; anomaly detection; deep learning; self-supervised learning;
cybersecurity; ET SSL; CNN+LSTM; autoencoder; QUIC; zero-day attacks.

INTRODUCTION

In the modern context of rapid digital technology development and widespread

implementation of encryption protocols (such as TLS, VPN, HTTPS, QUIC), the task of
monitoring network traffic for cybersecurity purposes has become significantly more complex.
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Traditional intrusion detection tools based on deep packet inspection are losing their
effectiveness, as the content of most communications is rendered inaccessible due to
cryptographic protection. In this context, anomaly detection — identifying unusual or
suspicious patterns in network traffic behavior — becomes a vital tool in combating
cyberattacks, particularly zero-day attacks, malicious botnets, and advanced persistent threats
[1, p. 407-414].

The growing volume of encrypted traffic within overall data flows is a statistically
confirmed trend. According to the Google Transparency Report, as of 2024, over 95% of web
traffic transmitted through Chrome browsers worldwide is encrypted. Similar figures are
reported by telecommunications network operators, including the CESNET research group,
which demonstrates the significant dominance of TLS and QUIC protocols in public datasets
of user internet activity. While encryption enhances the confidentiality of data exchange, it also
complicates traffic analysis, as security systems are limited to analyzing metadata without
access to the content of transmitted packets.

Given these limitations, the scientific community is actively seeking new approaches to
traffic analysis that do not require decryption. Among the most promising are deep learning
methods. These techniques are capable of modeling complex, non-linear relationships between
various traffic parameters, including time intervals, packet size sequences, flow direction,
transmission intensity, and session frequency [9, p. 99-124]. Deep neural architectures such as
autoencoders, convolutional neural networks, recurrent networks, and contrastive self-
supervised learning models have demonstrated strong capabilities in detecting abnormal
behavior even under conditions of limited or entirely absent labeled data. This is particularly
relevant in real-world traffic scenarios, where obtaining high-quality labels is labor-intensive
and time-consuming.

Special attention in the development and evaluation of such models is given to the use of
high-quality open datasets containing both normal and anomalous encrypted traffic. Among the
most commonly used datasets are CIC-Darknet2020, ISCXVPN2016, UNSW-NB15, QUIC-
TLS, and CESNET-Traffic. These datasets provide a broad range of realistic scenarios covering
various types of user activity, protocol characteristics, and network load patterns. They enable
not only effective model training but also objective evaluation of their generalization
capabilities in new and unpredictable conditions.

The relevance of this research lies in the urgent need to develop technologies capable of
detecting threats in fully or partially opaque network communications. The ability of such
systems to adapt to the ever-changing and dynamic cyber threat landscape is becoming a key
factor in the overall effectiveness of network defense mechanisms. This study focuses on
exploring the potential of deep learning for analyzing encrypted traffic, evaluating its
effectiveness, resilience to new types of attacks, and the practical feasibility of deploying such
models into real-time systems. The results obtained could serve as a foundation for building
adaptive intelligent monitoring systems capable of operating in high-load, encrypted network
environments without loss of threat sensitivity and with minimal false-positive rates.

THEORETICAL RESEARCH

The problem of anomaly detection in encrypted network traffic is increasingly being
addressed in contemporary scientific research. With the growing proportion of traffic transmitted
through encrypted protocols such as TLS, HTTPS, VPN, and QUIC, traditional security control
tools based on deep packet inspection are losing their effectiveness. In situations where access to
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data content is technically or legally impossible, the focus shifts to analyzing metadata —
characteristics that describe flow behavior, such as packet size and inter-arrival times, transmission
direction, connection duration, and statistical session-level aggregates.

In response to these challenges, there is a growing interest in the application of machine
learning and deep learning methods, which demonstrate a high capacity for detecting deviations
from normal behavior without requiring access to the content of transmitted data. In the early
stages of development in this field, classical machine learning algorithms were used, including
decision trees, random forest, support vector machines, and gradient boosting algorithms[10].
These approaches made it possible to achieve acceptable results in traffic classification tasks
based on aggregated flow features [11, p. 19-23]. For example, studies based on datasets such
as CICIDS2017 and ISCXVPN2016 reported accuracy levels exceeding 90% when using
ensemble classifiers [2, p. 77-78]. However, their application came with limitations —
primarily due to the need for manual feature selection, low contextual sensitivity, and limited
generalization capability when the network environment changed.

A significant breakthrough came with the advent of neural architectures, which allowed for
automatic feature extraction from data and the modeling of complex nonlinear relationships
between traffic parameters. One of the first approaches involved autoencoders — neural networks
capable of learning a compressed representation of normal network behavior and detecting
anomalies based on deviations from that pattern. In a study based on the CIC-Darknet2020 dataset,
autoencoders achieved over 99.99% accuracy in detecting anomalies in encrypted traffic [3].
Another study that applied deep autoencoder architectures to SSL sessions reported F1 scores
around 95% without using any information about the transmitted content [4, p. 1792-1806].

Further research has focused on the use of convolutional and recurrent neural networks.
CNN models have proven effective in working with encrypted flows where features can be
represented as vectors or matrices with temporal or statistical characteristics. These models
have demonstrated the ability to detect local anomalous patterns in traffic — such as sequences
of specific packet sizes or characteristic timing delays. On the other hand, LSTM models have
enabled the analysis of long-term dependencies between events in a network session, providing
higher sensitivity to the complex dynamics of traffic [5].

It is also worth noting the promise of hybrid architectures that combine the strengths of
CNN and LSTM. Such solutions have been implemented in several recent works, notably in
the HyperVision system, which successfully operates in real time with throughput exceeding
80 Gb/s, while maintaining an AUC above 0.92 even in cases of zero-day attacks [6].

A recent research direction is the application of self-supervised learning approaches,
particularly contrastive learning, which enables the construction of effective data representations
without the need for manual labeling. The ET-SSL system, proposed by Sattar et al. (2025), is a
vivid example of such an approach: it was trained on a set of real encrypted traffic from the CIC-
Darknet2020, UNSW-NB15, and QUIC-TLS datasets, achieving an accuracy of 96.8%, TPR of
92.7%, and FPR of only 1.2% with low latency (<25 ms) [6], [7]. This model demonstrates high
generalization ability, resilience to changes in the network landscape, and suitability for deployment
in real-time systems without the need to access the content of the data.

RESEARCH RESULTS
As part of this study, a comprehensive comparison was conducted between three deep

learning-based approaches to anomaly detection in encrypted network traffic. All models are
designed to analyze metadata of network flows without accessing packet content. To ensure
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objectivity and generalizability of conclusions, experiments were carried out on three public
datasets: CIC-Darknet2020, UNSW-NB15, and QUIC-TLS, each representing different types
of encrypted traffic and attack scenarios.

CIC-Darknet2020 is a dataset containing 141,000 sessions, including connections via
Tor, VPN, DoH, and typical encrypted DDoS attacks [12, p. 253-256]. UNSW-NB15 includes
over 2.5 million records of both normal and malicious traffic from a corporate network [8, p. 1-
6]. QUIC-TLS is a modern dataset of encrypted UDP traffic collected based on HTTP/3
interactions, incorporating zero-day C2C-class attacks and DNS-over-QUIC traffic. Each
dataset was transformed into a flow-based format, followed by a unified feature transformation
into 75 numerical parameters, including: Flow Duration, Total Fwd Packets, Total Backward
Packets, Fwd Packet Length Mean, Flow Bytes/s, Idle Mean, Subflow Fwd Bytes, and others.
The data were cleaned of duplicates, normalized using Z-score, and scaled to a consistent range.

The Autoencoder model was implemented as a symmetric deep neural network with three
layers in both encoder and decoder (sizes: 128-64-32-64-128). Mean squared error was used as
the loss function, with ReLU as the activation function. The model was trained on clean normal
traffic, and anomalies were detected by comparing the reconstruction error to a threshold value
calculated based on the empirical 95th percentile.

The CNN+LSTM model includes two convolutional layers with 3 on 1 filters and a stride
of 1, followed by an LSTM layer with 64 neurons. The dropout rate was set to 0.3, and
optimization was performed using the Adam algorithm with an initial learning rate of 0.001.
This architecture allows for the detection of local spatial dependencies in flows while
simultaneously accounting for their temporal structure.

The ET SSL model, proposed in [13], is based on contrastive self-supervised learning
mechanisms without labeled data. During training, positive and negative flow pairs are
generated and passed through a multilayer neural network (256-128-64). The contrastive loss
function optimizes the latent space representation such that similar pairs are brought closer
together and dissimilar ones are pushed farther apart. After training, DBSCAN clustering is
applied to the latent vectors; flows that do not belong to any cluster are labeled as anomalous.

To objectively evaluate the models, classification accuracy, false positive rate, and F1 score
metrics were applied — the latter being particularly relevant under significant class imbalance
conditions. To ensure a fair and comprehensive evaluation of model performance, three core
metrics were used: classification accuracy (Accuracy), F1 score, and false positive rate (FPR).
These metrics provide a balanced assessment of anomaly detection effectiveness, generalization
ability, and practical deployment viability. All results were obtained using 5-fold cross-validation
with an 80/20 train-test split on each dataset. During each fold, models were trained on the training
subset and evaluated on a held-out test set, with final scores averaged across all folds. Accuracy
was calculated as the ratio of correctly classified flows to the total number of flows in the test set.
The F1 score was computed as the harmonic mean of precision and recall, which is particularly
important under conditions of class imbalance. The FPR was defined as the proportion of benign
flows incorrectly classified as anomalous (i.e., FP / (FP + TN)). For the Autoencoder model, the
anomaly threshold was derived empirically as the 95th percentile of reconstruction error values
observed on the clean training data consisting solely of normal traffic.

Table 1 presents the computed values of the three core metrics for all models and datasets.
The ET SSL model achieved the highest accuracy: 96.8% on CIC-Darknet2020, 96.3% on UNSW-
NB15, and 95.8% on QUIC-TLS. In comparison, CNN+LSTM showed accuracies of 96.7%,
94.8%, and 94.0% respectively, while the Autoencoder model performed less effectively,
particularly on QUIC-TLS, where its accuracy dropped to 91.8%. In terms of F1 score, ET SSL
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consistently outperformed competitors, achieving 0.961 (CIC), 0.957 (UNSW), and 0.951 (QUIC),
which is 1-3 percentage points higher than the nearest alternative [15,p. 78-82].

Table 1
Accuracy, F1 Score, and FPR of the Models on Three Encrypted Datasets

Model CIC-Darknet2020 | UNSW-NB15 | QUIC-TLS
Accuracy F1 Accuracy
Autoencoder | 95.0 % 0.944 93.2%
CNN+LSTM | 96.7 % 0.956 94.8 %
ET SSL 96.8 % 0.961 96.3 %

A key component of the experimental analysis is the comprehensive comparison of model
performance across three main metrics: classification accuracy (Accuracy), F1 score, and false
positive rate (FPR). This approach provides a well-rounded evaluation of the overall
effectiveness of anomaly detection, the models’ generalization capabilities, and their practical
applicability in real-world deployment scenarios[14].

At the initial stage, classification accuracy was analyzed, representing the proportion of
correctly classified flows in the test set. As shown in Fig. 1, the ET SSL model achieved the
highest accuracy: 96.8% on the CIC-Darknet2020 dataset, 96.3% on UNSW-NB15, and 95.8%
on QUIC-TLS [16, p. 87].

Accuracy (%)
98
97
96
95
94
93
92
91
90
89
Autoencoder CNN+LSTM ET-SSL

M CIC-Darknet2020 ® UNSW-NB15 QUIC-TLS

Fig. 1. Accuracy of Autoencoder, CNN+LSTM, and ET-SSL Models on Three Datasets

These values are the highest among all compared approaches. CNN+LSTM recorded
similar, though slightly lower results — 96.7%, 94.8%, and 94.0%, respectively. In contrast,
the Autoencoder proved to be the least accurate, particularly when processing QUIC traffic,
where accuracy dropped to 91.8%. This may be attributed to the limited adaptability of the
unsupervised approach to high-level traffic obfuscation.

In the second stage, the F1 score was analyzed. Unlike simple accuracy, the F1 score
provides a balance between precision and recall, which is critically important in tasks involving
class imbalance. As shown in Fig. 2, the ET SSL model once again confirms its superiority,
achieving F1 scores of 0.961 on CIC-Darknet2020, 0.957 on UNSW-NB15, and 0.951 on
QUIC-TLS [17, p. 231-233].

529



K| B E pB E3 |_| E KA OCBITa, HayKa, TexHika Ne 1 (29), 2025

CYBERSECURITY: ISSN 2663 - 4023
EDUCATION, SCIENCE, TECHNIQUE

F1-score (%)

CIC-Darknet2020 UNSW-NB15 QUIC-TLS

98
96
94
92
9
88

o

B Autoencoder B CNN+LSTM ET-SSL

Fig. 2. F1 Score of Autoencoder, CNN+LSTM, and ET-SSL Models on Three Datasets

These indicators exceed the results of CNN+LSTM by 1-2 percentage points and
significantly outperform the Autoencoder, which demonstrates F1 scores in the range of 0.912—
0.944. This indicates the limited ability of the latter to adequately detect both positive and
negative samples under encryption conditions [18, p. 46-48].

The third and highly important aspect is the false positive rate (FPR), which directly
affects the operational value of the models. High FPR values lead to a large number of false
alerts, potentially overloading the security analytics infrastructure and reducing trust in the
system. Fig. 3 presents a comparison of FPR across all models.

FPR (%)
6
5
4
3
2
n
0
CIC-Darknet2020 UNSW-NB15 QUIC-TLS
M Autoencoder M CNN+LSTM ET-SSL

Fig. 3. False Positive Rate (FPR) of Autoencoder, CNN+LSTM, and ET-SSL Models

ET SSL once again demonstrates the lowest false positive rates: only 1.2% on CIC, 1.7%
on UNSW, and 2.0% on QUIC-TLS. For comparison, CNN+LSTM falls within the 2.2-3.1%
range, while the Autoencoder records critically high values — up to 5.3% on QUIC-TLS,
making it virtually unsuitable for real-world deployment in a production environment.

INTERPRETATION OF RESULTS

The empirically validated results of anomaly detection in encrypted network traffic not
only formalize the statistical success of the applied models but also provide a solid foundation
for extrapolating their practical potential in real-world information and communication
systems. The consistent classification accuracy exceeding 95% indicates the ability of modern
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deep learning architectures to correctly differentiate network flows even without access to the
content of transmitted packets — a fundamental limitation in the context of encryption.

Particular attention should be paid to the false positive rate (FPR), which is traditionally
considered a critical parameter for real-time threat detection systems. In this regard, the ET SSL
model demonstrates exceptionally low FPR values (<2% across all datasets), significantly
reducing the risk of overloading alerting infrastructure and lowering the cognitive burden on
human operators. Thus, the practical relevance of the ET SSL architecture in scalable
environments is supported not only by its high accuracy but also by its efficiency in response
resource utilization.

From an architectural innovation perspective, the ET SSL model, based on the concept of
contrastive self-supervised learning, shows a remarkable ability to construct generalized latent
spaces in which atypical samples can be heuristically distinguished. This approach does not rely
heavily on prior data labeling, opening new opportunities for application in zero-day detection
tasks — one of the most pressing challenges in modern cybersecurity. Therefore, the presented
results justify interpreting the ET SSL model as a methodologically sound platform for
developing adaptive, context-aware next-generation threat detection systems.

HYPERPARAMETER SENSITIVITY ANALYSIS

To assess the impact of key hyperparameters on model performance, a series of targeted
experiments was conducted, focusing on variations in learning rate, time window size, and the
Dropout regularization parameter. The analysis of the results made it possible to identify
configurations that offer an optimal trade-off between classification accuracy, convergence
speed, and computational complexity.

For the CNN+LSTM model, it was found that reducing the learning rate from 0.001 to
0.0005 improves classification accuracy by 0.8% (up to 97.5% on CIC-Darknet2020), although
it also increases training time by approximately 40%. Further reduction of the learning rate
below 0.0001 results in excessively slow convergence and a decline in the F1 score. Increasing
the window size from 20 to 50 allows the model to capture longer temporal contexts, which
positively impacts the F1 score (by up to +1.1%), though it also raises the resource intensity of
processing. Meanwhile, increasing the Dropout rate from 0.3 to 0.5 leads to a decrease in
accuracy (-0.8%), indicating loss of relevant information due to excessive regularization.

Table 2
Impact of Hyperparameters on CNN+LSTM Accuracy
Parameter Value | Accuracy (%)
Learning rate | 0.001 | 96.7
Learning rate | 0.0005 | 97.5

Window size | 20 96.7
Window size | 50 97.8
Dropout 0.3 96.7
Dropout 0.5 95.9

Regarding the Autoencoder model, experiments revealed its sensitivity to architectural
depth. Shallower configurations (64-32-16) offer faster training speeds but are less accurate (by
1.5-2%), whereas deeper architectures (256-128-64) yield higher performance but tend to
overfit on smaller datasets. This necessitates the use of regularization techniques in combination
with validated parameter selection methods such as grid search or Bayesian optimization.
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Overall, the results of the hyperparameter sensitivity analysis confirm the importance of
environment-specific adaptive tuning. Using static configurations without empirical validation
may lead to inefficient resource usage or reduced threat detection performance in dynamic
network conditions.

CONCLUSIONS AND FUTURE RESEARCH DIRECTIONS

As a result of the conducted study, it was established that modern deep learning-based
approaches to anomaly detection in encrypted network traffic demonstrate high effectiveness
even under conditions of limited access to the content of transmitted data. Among the tested
models, the best performance was demonstrated by the ET SSL architecture, based on
contrastive self-supervised learning mechanisms. It achieved the highest classification accuracy
(up to 96.8%), F1 scores (up to 0.961), and the lowest false positive rate (as low as 1.2%).

The hyperparameter sensitivity analysis confirmed the importance of adaptive tuning of
models to specific deployment environments. It was found that even small changes in window
size, learning rate, or regularization level can significantly affect both classification accuracy
and training convergence speed.

Thus, the results of this study support the feasibility of using deep neural networks for
encrypted traffic threat detection without decryption, opening up new prospects for the
development of next-generation intelligent cyber threat monitoring systems.

Future research directions include:

— Expanding the training base through new open datasets that cover modern
encryption protocols (e.g., Encrypted SNI, DoQ, etc.);

— Integrating models into real-time IDS/IPS systems, ensuring scalability and low
processing latency;

— Exploring explainable Al approaches to improve the transparency of model
decision-making;

— Developing federated learning techniques to enhance privacy while maintaining
model effectiveness in distributed networks;

— Adapting detection systems to adversarial attacks and developing defense
mechanisms against them.

Overall, the obtained results can serve as a foundation for building adaptive, robust, and
transparent threat detection systems suited for today’s increasingly encrypted network
environments.
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CYTTEBI TpyIHOIII I KibepOes3rnekn, 0coOMMBO I TPAOWIiIHHNX CHCTEM BHSBICHHS BTOPTHEHB, IO
0a3yI0ThCs Ha aHaJTi31 BMICTY IIaKeTiB. Y 1IbOMY JOCIIKEHHI PO3IIISTHYTO MPOOIieMy BUSBIICHHS aHOMAJTi i
y 3ammdpoBaHOMY MepeKeBOMY TpadiKy 3a JOMOMOTOK METO/IiB TIMOOKOr0 HABYAHHS, SIKi aHAJTI3YIOTh
MeTajiaHi 6e3 HeoOXiqHOCTI posimdpoByBaHHs. [[poBecHO KOMIUICKCHE CKCIICPUMEHTAIBHE TIOPIBHIHHS
Tppox apxitektyp — Autoencoder, CNN+LSTM ta ET SSL (Mozmens KOHTpacTHOro
CaMOKOHTpOJIbOBAaHOTO HABYaHHA) — 3 BHKOPHCTaHHSAM TPhOX BiAKpUTHX HabopiB manux: CIC-
Darknet2020, UNSW-NB15 ta QUIC-TLS, siKi OXOIUTIOIOTH PIi3HOMAHITHI THIM 3ammi(poBaHUX
TIPOTOKOJIB i aTak. Yci Habopu JaHuX OyJIo MorepeH0 00podiieHo 10 Gopmary moToki (flows) i3 75
CTaH/APTH30BAaHNMH YHCIOBIMH 03HaKamu. OmiHKa MOJeJIel BUKOHYBaJIacs 3a TOUHICTIO KiacH(ikarii,
F1-miporo Ta yacToToro XnOHOMO3UTHBHUX crparboByBaHb (FPR). Momerms ET SSL nokazarna HaiOLIbIT
CTaOUTBHI Ta HAMKpaIlli pe3yabTaTH, JOCSATHYBIIN TOYHOCTI 110 96,8%, F1-mipu 0,961 ta Huzekoro FPR —
mme 1,2%. CNN+LSTM nposeMoHCTpyBaia Jemio HUKdi, ajie KOHKYpEHTHI pe3yJIbTaTH, TO| SIK MOJIeN b
Autoencoder BusiBIIIa OOMEXEHHS Y 3ATHOCTI aJIanTyBaTUCS JI0 BHCOKOTO piBHs 00¢yckarii Tpadiky,
ocobnBo uist OTOKIB Ha ocHoBi npotokoiry QUIC. Kpim Toro, 0yiio nmpoBeneHo aHaii3 4yTJIMBOCTI
rireprnapamMeTpiB, 30KpeMa BHBYABCS BIUIMB ILIBHJIKOCTI HABYaHHS, PO3MIPY 4YacoBOTO BiKHA Ta
perysspusaitii dropout. OTprMaHi pe3ybTaTd MiATBEPANIA BAXKIMBY POJb aJATHBHOTO HAJIAIITYBAHHS
3MEHIIEHHS IIBUJIKOCTI HABYAHHs IOKPAIIYBalO TOYHICTb, MPOTE 30UIBIIYBAIO Yac HABYAHHS, a
TIOJIOBXXEHHSI 9aCOBOTO BiKHa TMOKpantyBaio F1-Mipy 3a paxyHOK MiBUIIEHNX OOUHCITIOBAILHUX BUTPAT.
ExcriepuMeHTanbHI  pe3ysabTaTd  MATBEP/DKYIOTh TPAKTHYHY JOLUIBHICTH 3aCTOCYBaHHS Moenei
TIMOOKOTO HABYAaHHSA JUI  MOHITOPHHTY 3ammgpoBaHoro Tpadiky 0e3 HeoOXimHOCTI Horo
posumppoByBanHs. OcoOIMMBO mepcrieKTHBHOKO € apxitektypa ET SSL, mo Moxxe OyTr BUKOpHCTaHA Y
CHCTEMaX BUSIBIICHHS 3aTpo3 Y PEXKUMI PEabHOTO Yacy 3aBISKU CBOiM CTIMKOCTI, BUCOKIH 3IaTHOCTI 10
y3araJbHeHHs Ta HU3bKill 4acTOoTi XMOHOMO3UTUBHUX pe3yibTatiB. KpiM Toro, 1i 31aTHICTh npaiiroBaTy B
yMOBax OOMEKEHOI KUTBKOCTI PO3MIUeHHUX JaHMX abo B3araji Oe3 HHX 3aBISKH CAaMOKOHTPOJIHOBAHOMY
HAaBYaHHIO pOOUTH ii 0COOIMBO MPHIATHOIO TS BUABICHHS aTaK HYJIBOBOTO JTHA. MaiOyTHI HApsSMKA
JIOCTIKEHb BKJIFOYAIOTh PO3IIMPEHHS PI3HOMAHITHOCTI HABYAIFHNX HAOOPIB TAHKX 3 ypaxXyBaHHSAM HOBHX
cranmaptiB mmdpyBanHs (Hanpukian, Encrypted SNI, DoQ), interpariiro Mojeneii y macmraboBaHi
cepenoruiia IDS/IPS 3 HU3KOIO 3aTPUIMKOIO, 32CTOCYBAHHS METO/IiB MOSICHIOBAHOTO IITYYIHOTO IHTEIEKTY
(XAI) ons migBUINCHHS JOBIPH Ta MPO30POCTi, a TAKOXK CTBOPEHHS MOJICNCH, CTIHKHMX O MPOTHIIi
cynpoTuBHUKa. [IpesicTaBieHi pe3y/ibTaTi € OCHOBOIO Il CTBOPEHHSI HACTYITHOTO HOKOJIIHHSI a/IalITHBHIX
1 KOHTEKCTHO-OPIEHTOBAHUX CUCTEM MOHITOPUHTY Kibep3arpos.

Kitrouosi ci1oBa: 3ammdpoBanmii Tpadik; BUSIBICHHS aHOMAIH; TIIMOOKE HABYaHHST; CAMOKOHTPOJILOBAHE
HaBuaHHsT; KibepoOesnieka; ET SSL; CNN+LSTM; aBrokonep; QUIC; ataku «HyI50BOTO JTHSD.
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