МОДЕЛІ ТА МЕТОДИ ІДЕНТИФІКАЦІЇ БЕЗДРОТОВИХ ПРИСТРОЇВ НА ОСНОВІ РАДІОЧАСТОТНИХ ХАРАКТЕРИСТИК: КОМПЛЕКСНИЙ АНАЛІЗ СУЧАСНИХ ПІДХОДІВ ДО RF-FINGERPRINTING

Автор(и)

DOI:

https://doi.org/10.28925/2663-4023.2025.31.1012

Ключові слова:

RF-fingerprinting, кібербезпека, виявлення загроз, радіосигнал, атаки, радіочастотна ідентифікація, машинне навчання, обробка сигналів, бездротова безпека, фізичний рівень автентифікації, глибоке навчання, спектральний аналіз, класифікація пристроїв.

Анотація

У статті представлено комплексний аналіз сучасних моделей та методів ідентифікації бездротових пристроїв на основі їх унікальних радіочастотних характеристик (RF-fingerprinting). Розглянуто фундаментальні принципи формування радіочастотних відбитків, які базуються на фізичних недосконалостях апаратних компонентів передавачів. Проаналізовано основні джерела унікальності радіосигналів, включаючи варіації в характеристиках осциляторів, підсилювачів потужності, модуляторів та антенних систем. Систематизовано існуючі підходи до RF-fingerprinting за критеріями методології вилучення ознак, застосованих алгоритмів класифікації та областей практичного використання. Детально розглянуто методи обробки сигналів у часовій, частотній та часово-частотній областях, включаючи аналіз перехідних процесів, спектральних характеристик та вейвлет-перетворення. Представлено класифікацію алгоритмів машинного навчання для ідентифікації пристроїв: від традиційних статистичних методів до сучасних архітектур глибокого навчання. Особливу увагу приділено гібридним підходам, що поєднують різні методології для підвищення точності та надійності ідентифікації. Проаналізовано вплив факторів навколишнього середовища, таких як багатопроменеве поширення, завади та динамічні зміни каналу зв'язку, на ефективність систем RF-fingerprinting. Розглянуто практичні аспекти впровадження технології в системах кібербезпеки, управління доступом та виявлення контрафактних пристроїв. Визначено ключові проблеми та обмеження існуючих методів, включаючи масштабованість, адаптивність до нових типів пристроїв та стійкість до навмисних атак. Запропоновано перспективні напрями розвитку технології RF-fingerprinting, зокрема інтеграцію з системами штучного інтелекту та квантовими технологіями обробки сигналів.

Завантаження

Дані завантаження ще не доступні.

Посилання

Cisco Annual Internet Report (2018-2023). White Paper. Cisco Systems, 2023. URL: https://www.cisco.com/c/en/us/solutions/collateral/executive-perspectives/annual-internet-report/white-paper-c11-741490.html

Danev, B., Zanetti, D., & Capkun, S. (2012). On physical-layer identification of wireless devices. ACM Computing Surveys, 45(1), 1-29. DOI: 10.1145/2379776.2379782

Polak, A. C., Dolatshahi, S., & Goeckel, D. L. (2011). Identifying wireless users via transmitter imperfections. IEEE Journal on Selected Areas in Communications, 29(7), 1469-1479. DOI: 10.1109/JSAC.2011.110812

Rehman, S. U., Sowerby, K. W., & Coghill, C. (2014). Analysis of impersonation attacks on systems using RF fingerprinting and low-end receivers. Journal of Computer and System Sciences, 80(3), 591-601. DOI: 10.1016/j.jcss.2013.06.013

Jagannath, A., Jagannath, J., & Kumar, P. S. P. V. (2022). A comprehensive survey on radio frequency (RF) fingerprinting: Traditional approaches, deep learning, and open challenges. Computer Networks, 219, 109455. DOI: 10.1016/j.comnet.2022.109455

Sankhe, K., Belgiovine, M., Zhou, F., Riyaz, S., Ioannidis, S., & Chowdhury, K. (2019). ORACLE: Optimized radio classification through convolutional neural networks. IEEE INFOCOM 2019, 370-378. DOI: 10.1109/INFOCOM.2019.8737463

Wu, Qingyang & Feres, Carlos & Kuzmenko, Daniel & Ding, Zhi & Yu, Zhou & Liu, Xin & Liu, Xiaoguang. (2018). Deep Learning Based RF Fingerprinting for Device Identification and Wireless Security. Electronics Letters. 54. 10.1049/el.2018.6404.

Merchant, K., Revay, S., Stantchev, G., & Nousain, B. (2022). Deep learning for RF device fingerprinting in cognitive communication networks. IEEE Journal of Selected Topics in Signal Processing, 12(1), 160-167. DOI: 10.1109/JSTSP.2018.2796446

D. Adesina, C. -C. Hsieh, Y. E. Sagduyu and L. Qian, "Adversarial Machine Learning in Wireless Communications Using RF Data: A Review," in IEEE Communications Surveys & Tutorials, vol. 25, no. 1, pp. 77-100, Firstquarter 2023, doi: 10.1109/COMST.2022.3205184.

Wong, L. J., Headley, W. C., & Michaels, A. J. (2022). Transfer learning for radio frequency machine learning: A taxonomy and survey. Sensors, 22(4), 1416. DOI (MDPI): 10.3390/s22041416

Restuccia, F., D'Oro, S., Al-Shawabka, A., Belgiovine, M., Angioloni, L., Ioannidis, S., Chowdhury К. & Melodia, T. (2023). DeepRadioID: Real-time channel-resilient optimization of deep learning-based radio fingerprinting algorithms. IEEE Transactions on Wireless Communications, 22(3), 1749-1763. https://doi.org/10.48550/arXiv.1904.07623

Xie L, Peng L and Zhang J et al. Radio frequency fingerprint identification for Internet of Things: A survey. Security and Safety 2024; 3: 2023022. https://doi.org/10.1051/sands/2023022

Hall, Jeyanthi & Barbeau, Michel & Kranakis, Evangelos. (2006). Detecting rogue devices in bluetooth networks using radio frequency fingerprinting. Proceedings of the Third IASTED International Conference on Communications and Computer Networks, CCN 2006. 108-113.

Brik, V., Banerjee, S., Gruteser, M., & Oh, S. (2008). Wireless device identification with radiometric signatures. Proceedings of the 14th ACM International Conference on Mobile Computing and Networking, 116-127. https://doi.org/10.1145/1409944.1409959

Huang, Y., & Zheng, H. (2012). Radio frequency fingerprinting based on the constellation errors. 18th Asia-Pacific Conference on Communications (APCC), 900-905. DOI: 10.1109/APCC.2012.6388238

Kennedy, I. O., Scanlon, P., Mullany, F. J., Buddhikot, M. M., Nolan, K. E., & Rondeau, T. W. (2008). Radio transmitter fingerprinting: A steady state frequency domain approach. IEEE 68th Vehicular Technology Conference, 1-5. DOI: 10.1109/VETECF.2008.291

Ureten, O., & Serinken, N. (1999). Wireless security through RF fingerprinting. Canadian Journal of Electrical and Computer Engineering, 32(1), 27-33. DOI: 10.1109/CJECE.2007.364330

Peng, L., Hu, A., Zhang, J., Jiang, Y., Yu, J., & Yan, Y. (2019). Design of a hybrid RF fingerprint extraction and device classification scheme. IEEE Internet of Things Journal, 6(1), 349-360. DOI: 10.1109/JIOT.2018.2838071

Vo-Huu, T. D., Vo-Huu, T. D., & Noubir, G. (2016). Fingerprinting Wi-Fi devices using software defined radios. Proceedings of the 9th ACM Conference on Security & Privacy in Wireless and Mobile Networks, 3-14. https://doi.org/10.1145/2939918.2939936

Robyns, P., Marin, E., Lamotte, W., Quax, P., Singelée, D., & Preneel, B. (2017). Physical-layer fingerprinting of LoRa devices using supervised and zero-shot learning. Proceedings of the 10th ACM Conference on Security and Privacy in Wireless and Mobile Networks, 58-63. https://doi.org/10.1145/3098243.3098267

Klein, R. W., Temple, M. A., & Mendenhall, M. J. (2009). Application of wavelet-based RF fingerprinting to enhance wireless network security. Journal of Communications and Networks, 11(6), 544-555. DOI: 10.1109/JCN.2009.6388408

Reising, D. R., Temple, M. A., & Mendenhall, M. J. (2010). Improved wireless security for GMSK-based devices using RF fingerprinting. International Journal of Electronic Security and Digital Forensics, 3(1), 41-59. https://doi.org/10.1504/IJESDF.2010.032330

Xu, Q., Zheng, R., Saad, W., & Han, Z. (2016). Device fingerprinting in wireless networks: Challenges and opportunities. IEEE Communications Surveys & Tutorials, 18(1), 94-104. DOI: 10.1109/COMST.2015.2476338

Bassey, J., Adesina, D., Li, X., Qian, L., Aved, A., & Kroecker, T. (2019). Intrusion detection for IoT devices based on RF fingerprinting using deep learning. Fourth International Conference on Fog and Mobile Edge Computing (FMEC), 98-104. DOI: 10.1109/FMEC.2019.8795319

A. Al-Shawabka et al., "Exposing the Fingerprint: Dissecting the Impact of the Wireless Channel on Radio Fingerprinting," IEEE INFOCOM 2020 - IEEE Conference on Computer Communications, Toronto, ON, Canada, 2020, pp. 646-655, doi: 10.1109/INFOCOM41043.2020.9155259.

S. Rajendran, W. Meert, V. Lenders and S. Pollin, "SAIFE: Unsupervised Wireless Spectrum Anomaly Detection with Interpretable Features," 2018 IEEE International Symposium on Dynamic Spectrum Access Networks (DySPAN), Seoul, Korea (South), 2018, pp. 1-9, doi: 10.1109/DySPAN.2018.8610471.

S. Hanna, S. Karunaratne and D. Cabric, "Open Set Wireless Transmitter Authorization: Deep Learning Approaches and Dataset Considerations," in IEEE Transactions on Cognitive Communications and Networking, vol. 7, no. 1, pp. 59-72, March 2021, doi: 10.1109/TCCN.2020.3043332

K. Sankhe et al., "No Radio Left Behind: Radio Fingerprinting Through Deep Learning of Physical-Layer Hardware Impairments," in IEEE Transactions on Cognitive Communications and Networking, vol. 6, no. 1, pp. 165-178, March 2020, doi: 10.1109/TCCN.2019.2949308.

Shi, Yan & Jensen, Michael. (2011). Improved Radiometric Identification of Wireless Devices Using MIMO Transmission. IEEE Transactions on Information Forensics and Security. 6. 1346-1354. 10.1109/TIFS.2011.2162949.

Candore, Andrea & Kocabas, Ovunc & Koushanfar, Farinaz. (2009). Robust stable radiometric fingerprinting for wireless devices. 43 - 49. 10.1109/HST.2009.5224969.

Roy, Debashri & Mukherjee, Tathagata & Chatterjee, Mainak & Blasch, Erik & Pasiliao, Eduardo. (2019). RFAL: Adversarial Learning for RF Transmitter Identification and Classification. IEEE Transactions on Cognitive Communications and Networking. PP. 1-1. 10.1109/TCCN.2019.2948919.

Oligeri, Gabriele & Sciancalepore, Savio & Raponi, Simone & Pietro, Roberto. (2022). PAST-AI: Physical-Layer Authentication of Satellite Transmitters via Deep Learning. IEEE Transactions on Information Forensics and Security. PP. 1-1. 10.1109/TIFS.2022.3219287.

Hamdaoui, Bechir & Alkalbani, Mohamed & Znati, Taieb & Rayes, Mark. (2019). Unleashing the Power of Participatory IoT with Blockchains for Increased Safety and Situation Awareness of Smart Cities. 10.48550/arXiv.1912.00962.

Jian, Tong & Rendon, Bruno & Ojuba, Emmanuel & Soltani, Nasim & Wang, Zifeng & Sankhe, Kunal & Gritsenko, Andrey & Dy, Jennifer & Chowdhury, Kaushik & Ioannidis, Stratis. (2020). Deep Learning for RF Fingerprinting: A Massive Experimental Study. IEEE Internet of Things Magazine. 3. 50-57. 10.1109/IOTM.0001.1900065.

Wang, W., Sun, Z., Piao, S., Zhu, B., & Ren, K. (2016). Wireless physical-layer identification: Modeling and validation. IEEE Transactions on Information Forensics and Security, 11(9), 2091-2106. DOI: 10.1109/TIFS.2016.2552146

Xie, Ning & Zhang, Shengli. (2018). Blind Authentication at the Physical Layer Under Time-Varying Fading Channels. IEEE Journal on Selected Areas in Communications. PP. 1-1. 10.1109/JSAC.2018.2824583.

Kim, Brian & Erpek, Tugba & Sagduyu, Yalin & Ulukus, Sennur. (2021). Covert Communications via Adversarial Machine Learning and Reconfigurable Intelligent Surfaces. 10.48550/arXiv.2112.11414.

Harrow, A. W., Hassidim, A., & Lloyd, S. (2009). Quantum algorithm for linear systems of equations. Physical Review Letters, 103(15), 150502. DOI: https://doi.org/10.1103/PhysRevLett.103.150502

W. Saad, M. Bennis and M. Chen, "A Vision of 6G Wireless Systems: Applications, Trends, Technologies, and Open Research Problems," in IEEE Network, vol. 34, no. 3, pp. 134-142, May/June 2020, doi: 10.1109/MNET.001.1900287

McMahan, B., Moore, E., Ramage, D., Hampson, S., & y Arcas, B. A. (2017). Communication-efficient learning of deep networks from decentralized data. Proceedings of the 20th International Conference on Artificial Intelligence and Statistics, 1273-1282. https://doi.org/10.48550/arXiv.1602.05629

Sokolov, V., Skladannyi, P., & Platonenko, A. (2022). Video channel suppression method of unmanned aerial vehicles. In IEEE 41st International Conference on Electronics and Nanotechnology (pp. 473–477). https://doi.org/10.1109/ELNANO54667.2022.9927105

Sokolov, V., Skladannyi, P., & Platonenko, A. (2023). Jump-stay jamming attack on Wi-Fi systems. In IEEE 18th International Conference on Computer Science and Information Technologies (pp. 1–5). https://doi.org/10.1109/CSIT61576.2023.10324031

Sokolov, V., Skladannyi, P., & Korshun, N. (2023). ZigBee network resistance to jamming attacks. In IEEE 6th International Conference on Information and Telecommunication Technologies and Radio Electronics (pp. 161–165). https://doi.org/10.1109/UkrMiCo61577.2023.10380360

Sokolov, V., Skladannyi, P., & Astapenya, V. (2023). Bluetooth Low-Energy beacon resistance to jamming attack. In IEEE 13th International Conference on Electronics and Information Technologies (pp. 270–274). https://doi.org/10.1109/ELIT61488.2023.10310815

Sokolov, V., Skladannyi, P., & Mazur, N. (2023). Wi-Fi repeater influence on wireless access. In IEEE 5th International Conference on Advanced Information and Communication Technologies (pp. 33–36). https://doi.org/10.1109/AICT61584.2023.10452421

Sokolov, V., Skladannyi, P., & Astapenya, V. (2023). Wi-Fi interference resistance to jamming attack. In IEEE 5th International Conference on Advanced Information and Communication Technologies (pp. 1–4). https://doi.org/10.1109/AICT61584.2023.10452687

Sokolov, V. (2025). Ensuring the resilience of wireless systems to jamming attacks. Telecommunications and Information Technologies, 1(86), 50–60. https://doi.org/10.31673/2412-4338.2025.013623

Sokolov, V. (2025). Technology for tracking subscriber movement across the territory of a critical infrastructure enterprise. Cybersecurity: Education, Science, Technique, 1(29), 207–222. https://doi.org/10.28925/2663-4023.2025.29.920

Downloads


Переглядів анотації: 0

Опубліковано

2025-12-16

Як цитувати

Лобан, Г., & Луковський, Т. (2025). МОДЕЛІ ТА МЕТОДИ ІДЕНТИФІКАЦІЇ БЕЗДРОТОВИХ ПРИСТРОЇВ НА ОСНОВІ РАДІОЧАСТОТНИХ ХАРАКТЕРИСТИК: КОМПЛЕКСНИЙ АНАЛІЗ СУЧАСНИХ ПІДХОДІВ ДО RF-FINGERPRINTING. Електронне фахове наукове видання «Кібербезпека: освіта, наука, техніка», 3(31), 169–187. https://doi.org/10.28925/2663-4023.2025.31.1012