ASSESSMENT OF THE SECURITY LEVEL OF HEAVILY NOISE-DISTORTED SPEECH INFORMATION BASED ON THE RESIDUAL INTELLIGIBILITY CRITERION

Authors

DOI:

https://doi.org/10.28925/2663-4023.2025.29.937

Keywords:

Integrated information-protection system, speech-information protection, assessment of speech-information security level.

Abstract

This paper substantiates the scientific foundations for assessing the security level of heavily noise-distorted speech information in technical channels of information leakage using the residual intelligibility criterion. The limitations of traditional approaches to speech-security assessment are analyzed, including SNR, SPC, AI, and SII metrics, which do not account for nonlinear distortions, the frequency-selective properties of the environment, or acoustic reverberation effects. An integral metric, RII, is proposed to characterize an adversary’s ability to reconstruct the informative content of a signal after interference exposure. A generalized speech-processing model is developed, combining wavelet filtering, segmentation, triphone-structure analysis, and neural residual-intelligibility estimation. A classification of major noise types is presented, including white, reverberant, combinational, and speech-like noise, along with approaches to their mathematical generation. It is demonstrated that incorporating the time–frequency characteristics of the environment and the speaker’s individual features increases the accuracy of modeling hazardous scenarios of speech-information interception. The proposed approach enables objective ranking of leakage channels and supports rational decision-making regarding active and passive acoustic protection. The methodology can be applied to the design of comprehensive technical information-protection systems, threat expert analysis, and evaluation of the effectiveness of speech-suppression measures under complex acoustic conditions. Special attention is given to modeling the acoustic interaction between the source, enclosing structures, and technical reconnaissance devices, enabling quantitative assessment of the probability of partial or complete reconstruction of message content. The developed methodology accounts for phase distortions, structural spectral maxima, adaptive-filtering characteristics, and conditions of tonal masking. From the standpoint of reducing residual speech informativeness, a comparative analysis procedure is proposed for evaluating the effectiveness of different types of interference.

Downloads

Download data is not yet available.

References

Verkhovna Rada Ukrainy. (1994). Zakon Ukrainy “Pro derzhavnu taiemnytsiu”. https://zakon.rada.gov.ua/laws/show/3855-12

Verkhovna Rada Ukrainy. (1994). Zakon Ukrainy “Pro zakhyst informatsii v informatsiino-telekomunikatsiinykh systemakh”. https://zakon.rada.gov.ua/laws/show/80/94-vr

Verkhovna Rada Ukrainy. (2010). Zakon Ukrainy “Pro zakhyst personalnykh danykh”. https://zakon.rada.gov.ua/laws/show/2297-17

NDTZI 3.7-003-2023. (2023). Metodyka modeliuvannia zahroz ta otsinky ryzykiv u systemakh tekhnichnoho zakhystu informatsii. Kyiv: DSSZZI.

NDTZI 3.6-003-2016. (2016). Poriadok provedennia atestatsii kompleksnoi systemy zakhystu informatsii. Kyiv: DSSZZI.

NDTZI 3.5-001-2017. (2017). Zahalni vymohy shchodo zabezpechennia tekhnichnoho zakhystu informatsii. Kyiv: DSSZZI.

Administratsiia Derzhspetszviazku Ukrainy. (2015/2023). Nakaz № 023 “Pro zatverdzhennia Poriadku provedennia instrumentarnoho kontroliu tekhnichnykh kanaliv vytoku informatsii”. Kyiv: DSSZZI.

Acoustical Society of America. (1997). ANSI/ASA S3.5-1997: Methods for calculation of the Speech Intelligibility Index. https://acousticalsociety.org

French, N. R., & Steinberg, J. C. (1947). Factors governing the intelligibility of speech sounds. Journal of the Acoustical Society of America, 19(1), 90–119. https://doi.org/10.1121/1.1916407

Hu, Y., & Loizou, P. C. (2008). Evaluation of objective quality measures for speech enhancement. IEEE Transactions on Audio, Speech & Language Processing, 16(1), 229–238. https://doi.org/10.1109/TASL.2007.911054

Loizou, P. C. (2013). Speech enhancement: Theory and practice (2nd ed.). CRC Press. https://doi.org/10.1201/b14529

Dudley, H. (1940). The carrier nature of speech. Bell System Technical Journal, 19(4), 495–515. https://archive.org/details/bstj19-4-495

Zhao, Y., Ni, Z., Chen, M., & Wang, B. (2018). Convolutional-recurrent neural networks for speech enhancement. IEEE/ACM Transactions on Audio, Speech, and Language Processing, 26(12), 2152–2161. https://doi.org/10.1109/TASLP.2018.2871433

Snyder, D., Garcia-Romero, D., Sell, G., Povey, D., & Khudanpur, S. (2018). X-vectors: Robust DNN embeddings for speaker recognition. In ICASSP 2018: IEEE International Conference on Acoustics, Speech and Signal Processing (pp. 5329–5333). https://doi.org/10.1109/ICASSP.2018.8461375

Tkachenko, M., Fedorenko, R., Kondratenko, Yu., & Zotova, I. (2019). Metody avtomatychnoi identyfikatsii dyktora za holosom. Zbirnyk naukovykh prats Tsentru voienno-stratehichnykh doslidzhen NUOU imeni Ivana Cherniakhovskoho, 131–135. https://doi.org/10.33099/2304-2745/2018-3-64/131-135

Rabiner, L. R., & Schafer, R. W. (1978). Digital processing of speech signals – Online complement. https://people.csail.mit.edu/rmd/Projects/SpeechProcessing/

O’Shaughnessy, D. (2000). Speech communications: Human and machine (2nd ed.). IEEE Press. https://doi.org/10.1109/9780470545397

Rabiner, L. R. (1989). A tutorial on hidden Markov models and selected applications in speech recognition. Proceedings of the IEEE, 77(2), 257–286. https://doi.org/10.1109/5.18626

Goodfellow, I., Bengio, Y., & Courville, A. (2016). Deep learning. MIT Press. https://www.deeplearningbook.org

Davis, A., Rubinstein, M., Wadhwa, N., Durand, F., & Freeman, W. (2014). The visual microphone: Passive recovery of sound from video. ACM SIGGRAPH 2014. https://doi.org/10.1145/2601097.2601119

U.S. Department of Defense. (2014). DoD Instruction 5240.05: Technical surveillance countermeasures (TSCM) (Incorporating Change 2, August 27, 2020). https://www.esd.whs.mil/Portals/54/Documents/DD/issuances/dodi/524005p.pdf

U.S. Department of Defense. (2017). Technical Surveillance Countermeasures (TSCM) handbook. https://www.dni.gov/files/NCSC/documents/products/TSCM-Handbook.pdf

Taal, C. H., Hendriks, R. C., Heusdens, R., & Jensen, J. (2011). A short-time objective intelligibility measure for time-frequency weighted noisy speech. ICASSP 2011: IEEE International Conference on Acoustics, Speech, and Signal Processing, 4214–4217. https://doi.org/10.1109/ICASSP.2011.5944212

Ephrat, A., Halperin, T., Peleg, S., & Freeman, W. T. (2018). Looking to listen at the cocktail party: A visual-audio model for speech separation. ACM Transactions on Graphics, 37(4), 1–12. https://doi.org/10.1145/3197517.3201397

Downloads


Abstract views: 8

Published

2025-09-26

How to Cite

Nuzhnyi, S. (2025). ASSESSMENT OF THE SECURITY LEVEL OF HEAVILY NOISE-DISTORTED SPEECH INFORMATION BASED ON THE RESIDUAL INTELLIGIBILITY CRITERION. Electronic Professional Scientific Journal «Cybersecurity: Education, Science, Technique», 1(29), 897–908. https://doi.org/10.28925/2663-4023.2025.29.937