QUALITY ANALYSIS OF PINK NOISE GENERATORS

Authors

DOI:

https://doi.org/10.28925/2663-4023.2025.29.940

Keywords:

noise generator, noise quality coefficient, pseudo-random sequence generator, pink noise, quality entropy coefficient, noise signal envelope

Abstract

The article set the task of comprehensively assessing the quality of pink noise generators using three different analytical methods and criteria. The study is aimed at solving the current problem of ensuring reliable protection of confidential speech information from unauthorized access through acoustic leakage channels in the face of growing threats to information security. The methodological basis of the study includes three main approaches to assessing the quality of generators: determining the noise quality coefficient using the asymmetry and kurtosis coefficients, which allows assessing the compliance of the distribution of signal values ​​with the normal law; determining the entropy quality coefficient using the entropy formula for the normal Gaussian distribution; determining the entropy coefficient of the quality of the distribution of the noise signal envelope based on the Rayleigh distribution. The experimental part of the study is based on a comparative analysis of two types of pink noise generators with processing of 10-second samples of 441,000 samples. The reference sample was taken as a hardware acoustic noise generator of the ST-NG1 brand, which is used to protect acoustic information in office premises and has certified characteristics. For comparison, a software generator created using the Python programming language using a pseudo-random sequence and digital filtering algorithms was studied. The results of experimental studies demonstrated the different effectiveness of the applied evaluation methods. The most informative was the method of determining the quality entropy coefficient of the envelope signal distribution, which provided a clear differentiation between the generators used. The practical significance of the research results lies in the possibility of applying the obtained approaches for certification and quality control of acoustic information protection means. Promising directions for further research were identified to expand the experimental base of the study and involve a larger number of types of generators from different manufacturers and different principles of operation for the universality of the proposed methods.

Downloads

Download data is not yet available.

References

Blintsov, V., Nuzhniy, S., Kasianov, Y., & Korytskyi, V. (2020). MATHEMATICAL MODEL OF THE SYSTEM OF ACTIVE PROTECTION AGAINST EAVESDROPPING OF SPEECH INFORMATION ON THE SCRAMBLER GENERATOR. EUREKA: Physics and Engineering, 3, 11–22. https://journal.eu-jr.eu/engineering/article/view/1315

Ivanchenko, S., Bezshtanko, V., & Havrylenko, O. (2016). Statistical reliability of noise hindrance for ensuring protection against leakage of information through technical channels. Collection "Information technology and security", 4(2), 207–215. https://doi.org/10.20535/2411-1031.2016.4.2.109981

Мартинюк, Г. В., Оникієнко, Ю. Ю., Щербак, Л. М. (2016). Analysis of the pseudorandom number generators by the metrological characteristics. Eastern-European Journal of Enterprise Technologies, 1(9(79)),25. https://doi.org/10.15587/1729-4061.2016.60608

Blintsov, V., Nuzhniy, S., Parkhuts, L., & Kasianov, Y. (2018). The objectified procedure and a technology for assessing the state of complex noise speech information protection. Eastern-European Journal of Enterprise Technologies, 5(9 (95)), 26–34. https://doi.org/10.15587/1729-4061.2018.144146

Давлет’янц, О. І., & Бурзаковський, Р. В. (2010). ПРОГРАМНО-АПАРАТНИЙ КОМПЛЕКС ЗАХИСТУ ІНФОРМАЦІЇ ВІД ВИТОКУ АКУСТИЧНИМ КАНАЛОМ. Ukrainian Information Security Research Journal, 12(4 (49)). https://doi.org/10.18372/2410-7840.12.1977

Larysa Kriuchkova & Ivan Tsmokanych. (2021). ОГЛЯД МЕТОДІВ ЗАХИСТУ АКУСТИЧНОЇ ІНФОРМАЦІЇ ВІД ВИТОКУ КАНАЛАМИ, СФОРМОВАНИМИ ВИСОКОЧАСТОТНИМИ НАВ’ЯЗУВАННЯМИ. International Journal of Innovative Technologies in Social Science, (3(31)). https://doi.org/10.31435/rsglobal_ijitss/30092021/7685

Іванченко С.О., Гавриленко О.В., Липський О.А., Шевцов А.С. (2016) ТЕХНІЧНІ КАНАЛИ ВИТОКУ ІНФОРМАЦІЇ. ПОРЯДОК СТВОРЕННЯ ТЕХНІЧНОГО ЗАХИСТУ ІНФОРМАЦІЇ, Навчальний посібник НТУУ “Київський політехнічний інститут”.

Siniuhin, V. V., Kataiev, V. S., & Hrytsak, А. V. (2021). Modular Noise Generator for Blocking Acoustic Information Leaks. Visnyk of Vinnytsia Politechnical Institute, 159(6), 158–164. https://doi.org/10.31649/1997-9266-2021-159-6-158-164

S.V Lenkov, D.A. Peregudov and V.A. Khoroshko,Methods and Means of Information Protection. Volume I.Unauthorized Receiving the Information.Kyiv, Ukraine:Arii, 2008.

С.О Іванченко, В.О. Хорошко, О.В. Гавриленко, та О.М. Кулініч,“Метод діагностування шумових завад для забезпечення захищеності інформації від витоку технічними каналами”,Захист інформації.. 22, с. 74-86, 2015.

Yudin, O., Ziubina, R., Buchyk, S., Bohuslavska, O., & Teliushchenko, V. (2019). Speaker’s Voice Recognition Methods in High-Level Interference Conditions. У 2019 IEEE 2nd Ukraine Conference on Electrical and Computer Engineering (UKRCON). IEEE. https://doi.org/10.1109/ukrcon.2019.8879937

Purwins, H., Li, B., Virtanen, T., Schluter, J., Chang, S.-Y., & Sainath, T. (2019). Deep Learning for Audio Signal Processing. IEEE Journal of Selected Topics in Signal Processing, 13(2), 206–219. https://doi.org/10.1109/jstsp.2019.2908700

Kostiuk, Yu. V., Skladannyi, P. M., Bebeshko, B. T., Khorolska, K. V., Rzaieva, S. L., & Vorokhob, M. V. (2025). Information and communication systems security. [Textbook] Kyiv: Borys Grinchenko Kyiv Metropolitan University.

Kostiuk, Yu. V., Skladannyi, P. M., Hulak, H. M., Bebeshko, B. T., Khorolska, K. V., & Rzaieva, S. L. (2025). Information security systems. [Textbook] Kyiv: Borys Grinchenko Kyiv Metropolitan University.

Hulak, H. M., Zhyltsov, O. B., Kyrychok, R. V., Korshun, N. V., & Skladannyi, P. M. (2023). Enterprise information and cyber security. [Textbook] Kyiv: Borys Grinchenko Kyiv Metropolitan University.

V. Sokolov, P. Skladannyi, A. Platonenko, Jump-Stay Jamming Attack on Wi-Fi Systems, in: IEEE 18th International Conference on Computer Science and Information Technologies (2023) 1–5. doi: 10.1109/CSIT61576.2023.10324031.

V. Sokolov, P. Skladannyi, N. Korshun, ZigBee Network Resistance to Jamming Attacks, in: IEEE 6th International Conference on Information and Telecommunication Technologies and Radio Electronics (2023) 161–165. doi: 10.1109/UkrMiCo61577.2023.10380360.

V. Sokolov, P. Skladannyi, V. Astapenya, Bluetooth Low-Energy Beacon Resistance to Jamming Attack, in: IEEE 13th International Conference on Electronics and Information Technologies (2023) 270–274. doi: 10.1109/ELIT61488.2023.10310815.

V. Sokolov, P. Skladannyi, N. Mazur, Wi-Fi Repeater Influence on Wireless Access, in: IEEE 5th International Conference on Advanced Information and Communication Technologies (2023) 33–36. doi: 10.1109/AICT61584.2023.10452421.

V. Sokolov, P. Skladannyi, V. Astapenya, Wi-Fi Interference Resistance to Jamming Attack, in: IEEE 5th International Conference on Advanced Information and Communication Technologies (2023) 1–4. doi: 10.1109/AICT61584.2023.10452687.

L. Kriuchkova, et al., Experimental Research of the Parameters of Danger and Protective Signals Attached to High-Frequency Imposition, in: Cybersecurity Providing in Information and Telecommunication Systems II, vol. 3550 (2023) 261-268.

L. Kriuchkova, et al., Influence of protective signals on dangerous signals of high-frequency imposition, in: Cybersecurity Providing in Information and Telecommunication Systems, vol. 3654, 2024, 419–425.

Downloads


Abstract views: 12

Published

2025-09-26

How to Cite

Romaniuk , V., & Platonenko, A. (2025). QUALITY ANALYSIS OF PINK NOISE GENERATORS . Electronic Professional Scientific Journal «Cybersecurity: Education, Science, Technique», 1(29), 789–799. https://doi.org/10.28925/2663-4023.2025.29.940

Most read articles by the same author(s)