DETECTION OF THE MOST COMMON FAKE NEWS USING LEIDEN CLUSTERING

Authors

DOI:

https://doi.org/10.28925/2663-4023.2025.30.977

Keywords:

fake news, deep learning, protected data

Abstract

Today, a significant challenge is the automatic identification of fake news and the detection of groups of messages that spread unreliable or manipulative content. One of the effective tools for addressing this task is the Leiden clustering method. The Leiden algorithm belongs to community detection methods in graphs and enables grouping news items based on their internal similarity. For news analysis, a set of characteristics is first formed for each message: its textual content, semantic features, source of dissemination, publication time, and other additional parameters. Based on these data, a graph is created in which vertices represent individual news items, while edges describe the degree of their similarity. The Leiden method performs the step-by-step merging of such news items into clusters, ensuring high-quality partitioning due to iterative refinement of group structures. Using Leiden clusters makes it possible to identify concentrations of messages that exhibit signs of falsification or coordinated dissemination. Typically, such groups are characterized by repeated phrases, identical text templates, accelerated dissemination dynamics, and a large number of cross-references between non-authoritative sources. Analyzing these structures allows the detection of targeted information campaigns, bot networks, and mass distributions of false content. Thus, the Leiden clustering method is an effective approach for summarizing and grouping news messages, significantly improving the accuracy of fake-news detection. Its application in media monitoring systems provides deeper insight into information flows and contributes to the timely identification of disinformation.

Downloads

Download data is not yet available.

References

Shivani, D. B. (2017). Techniques of Text Detection and Recognition: A Survey. International Journal of Emerging Research in Management &Technology (IJERMT), 83-87. DOI: 10.1109/TPAMI.2014.2366765

Pate, C. A. (2021). Asthma surveillance - United States, 2006–2018. MMWR. Surveillance Summaries, 70 (SS-5), 1–32. http://dx.doi.org/10.15585/mmwr.ss7005a1

Ndidiamaka, A. F., & Awo, I. N. M. Creating social and political capital throughstrategic information and communication management in governance: A content analysis of federal government's information and communication managers'public communication from 2019–. Gregory University, 44.

Mohammed, N. (2023). Bangla Plagiarism checker using Machine Learning.

Hoy, N., & Koulouri, T. (2021). A systematic review on the detection of fake news articles. arXiv preprint arXiv:2110.11240. https://doi.org/10.48550/arXiv.2110.11240

Mishra, S., Sturm, B. L., & Dixon, S. (2017, October). Local interpretable model-agnostic explanations for music content analysis. In ISMIR (Vol. 53, pp. 537-543).

Olan, F., Jayawickrama, U., Arakpogun, E. O., Suklan, J., & Liu, S. (2024). Fake news on social media: the impact on society. Information Systems Frontiers 26(2), 443-458. https://doi.org/10.1007/s10796-022-10242-z

Bago, B., Rand, D. G., & Pennycook, G. (2020). Fake news, fast and slow: Deliberation reduces belief in false (but not true) news headlines. Journal of experimental psychology: general, 149(8), 1608.

Mendiguren, T., Pérez Dasilva, J., & Meso Ayerdi, K. (2020). Actitud ante las Fake News: Estudio del caso de los estudiantes de la Universidad del País Vasco. Revista de comunicación, 19(1), 171-184. http://dx.doi.org/10.26441/rc19.1-2020-a10.

Ross, A. S., & Rivers, D. J. (2018). Discursive deflection: Accusation of “fake news” and the spread of mis-and disinformation in the tweets of President Trump. Social media+ society. 4(2), 2056305118776010. https://doi.org/10.1177/20563051187760

Morgan, S. (2018). Fake news, disinformation, manipulation and online tactics to undermine democracy. Journal of cyber policy 3(1), 39-43. https://doi.org/ 10.1080/23738871.2018.1462395

Nelson, J. L., & Taneja, H. (2018). The small, disloyal fake news audience: The role of audience availability in fake news consumption. New media & society. 20(10), 3720-3737. https://doi.org/10.1177/14614448187587

Tajrian, M., Rahman, A., Kabir, M. A., & Islam, M. R. (2023). A review of methodologies for fake news analysis. IEEe Access. 11, 73879-73893. doi: 10.1109/ACCESS.2023.3294989.

Zhang, Y., Jin, R., & Zhou, Z. H. (2010). Understanding bag-of-words model: a statistical framework. International journal of machine learning and cybernetics. 1, 43-52. https://doi.org/10.1007/s13042-010-0001-0

Triyono, A., & Faqih, A. (2025). Implementation of the Naive Bayes Method in Sentiment Analysis of Spotify Application Reviews. Journal of Artificial Intelligence and Engineering Applications (JAIEA), 4(2), 1091-1097.

Yi, J., Xu, Z., Huang, T., & Yu, P. (2025). Challenges and Innovations in LLM-Powered Fake News Detection: A Synthesis of Approaches and Future Directions. arXiv preprint. https://doi.org/10.48550/arXiv.2502.00339

Amriza, R. N. S., Chou, T. C., & Ratnasari, W. (2025). Understanding the shifting nature of fake news research: Consumption, dissemination, and detection. Journal of the Association for Information Science and Technology. https://doi.org/10.1002/asi.24980

Hoy, N., & Koulouri, T. (2025). An exploration of features to improve the generalisability of fake news detection models. Expert Systems with Applications, 126949. https://doi.org/10.1016/j.eswa.2025.126949

Öztürk, A. G., & Turan, M. (2024). Sentiment Analysis Using Machine Learning Methods on News Texts. International Journal of Engineering and Computer Science. https://doi.org/10.18535/ijecs/v13i11.4932.

Gadek, G., & Guélorget, P. (2020). An interpretable model to measure fakeness and emotion in news. Procedia Computer Science, 176, 78-87. https://doi.org/10.1016/j.procs.2020.08.009

Rahman, A., Zaman, S., Parvej, S., Shill, P. C., Salim, M. S., & Das, D. (2025). Fake News Detection: Exploring the Efficiency of Soft and Hard Voting Ensemble. Procedia Computer Science.

Vo, T. H., Felde, I., & Ninh, K. C. (2025). Fake News Detection System, based on CBOW and BERT. Acta Polytechnica Hungarica, 252, 748-757. https://doi.org/10.1016/j.procs.2025.01.035

Orebi, S. M., & Naser, A. M. (2025). Opinion Mining in Text Short by Using Word Embedding and Deep Learning. Journal of Applied Data Sciences. https://doi.org/10.47738/jads.v6i1.438

Chabukswar, A., Shenoy, P. D., & Venugopal, K. R. (2025). Detecting Misinformation in COVID-19 Content: A Machine Learning and Deep Learning Approach with Word Embeddings. SN Computer Science, 6(1), 1-18. DOI: 10.1109/ACCESS.2020.3022867

Nguyen, H. T., Duong, K. H., Pham, L. T. T., Bui, P. H. D., Thai-Nghe, N., & Dien, T. T. (2025). Inverted Index for Similar Document Detection: A Case Study at Can Tho University Journal of Science. SN Computer Science, 6(3), 216. DOI https://doi.org/10.1007/s42979-025-03707-w

Jiang, P. T., Zhang, C. B., Hou, Q., Cheng, M. M., & Wei, Y. (2021). Layercam: Exploring hierarchical class activation maps for localization. IEEE Transactions on Image Processing. 30, 5875-5888. DOI: 10.1109/TIP.2021.3089943

Downloads


Abstract views: 47

Published

2025-10-26

How to Cite

Chyrun, L., & Nazarkevych, A. (2025). DETECTION OF THE MOST COMMON FAKE NEWS USING LEIDEN CLUSTERING. Electronic Professional Scientific Journal «Cybersecurity: Education, Science, Technique», 2(30), 630–644. https://doi.org/10.28925/2663-4023.2025.30.977