APPLICATION OF MARKOV CHAINS TO DEVELOP SCENARIOS FOR THE DEVELOPMENT OF LOCAL SOCIO-ECONOMIC SYSTEMS
DOI:
https://doi.org/10.28925/2663-4023.2025.31.1039Keywords:
information technology; Markov chains; scenarios; uncertainty; local socio-economic system.Abstract
The paper is dedicated a methodology of using Markov chains to build scenarios for the development of local socio-economic systems under conditions of uncertainty. These systems, having their own dynamics, can remain in different states: sustainable development, stability, risk, decline and recovery. SWOT, PEST analysis, expert assessment methods are used traditionally. The scenario options are only realistic optimistic and pessimistic. In conditions of rapid changes of the economic situation, structural reforms, military aggression, methods that translate the retrospective into the future become unsuitable. The use of Markov chains in scenarios allows the decision-maker to design different options for the development of events, based on clear assumptions about the external environment, internal structure and the pace of its development, to investigate the behavior of the system in several steps. The proposed methodology was used to build a scenario for the development of a territorial community, the leading sector of the economy of which is agriculture. The key criteria are indicators of the efficiency of agricultural production. The use of Markov chains in building scenarios allowed us to develop substantiated scenarios for the sustainable development of a territorial community with different production specialization and diversification of production and environmental load. The paper proposes the selection of functions based on an expert survey. The key aspect of the methodology is the construction of a transition matrix. Data on production factors and environmental factors can be changed, which will affect the probabilities of transitions through indicators, and the transition matrix will automatically change, which will allow us to visualize the modeling process.
Downloads
References
Wollenberg, E. Edmunds, D. & Buck L. (2000) Anticipationg change: scenarios as a tool for adaptive forest management. A guide Retrieved from URL https://www.cifor-icraf.org/publications/pdf_files/scenarios.pdf
Schoemaker, P. J. H. Using Scenarios in Strategic Planning. (2004) R&D Meets M&A. Philadelphia: Chemical Heritage Press, 2004. Ch.12. P. 81–90
Бідюк, П. І., & Загірська, І. О. (2019). Методика побудови сценарного аналізу із використанням байєсівських методів. Електротехнічні та комп’ютерні системи, (8(84), 137-142. Retrieved from URL https://eltecs.op.edu.ua/index.php/journal/article/view/1259 (in Ukrainian)
Соловйов В. М., & Стратійчук І. О. (2012, грудень) Застосування складних ланцюгів Маркова для прогнозування складних фінансово-економічних систем. Актуальні проблеми розвитку економічної кібернетики. Міжнародна науково-практична конференція, Київ. (in Ukrainian)
Delbianco, F., Fioriti, A. & Tohmé, F. (2023) Markov chains, eigenvalues and the stability of economic growth processes. Empirical Economics, 64, 1347–1373. doi:10.1007/s00181-022-02276-8
Schweizer VJ, Jamieson-Lane AD, Cai H, Lehner S, & SmerlakM (2023) Pathways for socioeconomic system transitions expressed as a Markov chain. PLoS ONE 18(7): e0288928. doi:10.1371/journal.pone.0288928
Doroshkevych, K., Maslak, O., Voronovska, V., & Salata, I. (2020) Use of Markov chains for modeling processes of strategic planning of innovative activity of the enterprise. WSEAS Transactions on environment and development. 16, PP. 440-447/ doi: 10.37394/232015.2020.16.44
Zhao, Y., Xie, D. Zhang, X. & Ma, S. (2021) Integrating Spatial Markov Chains and Geographically Weighted Regression-Based Cellular Automata to Simulate Urban Agglomeration Growth: A Case Study of the Guangdong–Hong Kong–Macao Greater Bay Area. Land. 10, 8, 633. doi:10.3390/land10060633.
Renate N. Thiede, Inger N. Fabris-Rotelli, Pravesh Debba, & Christopher W. Cleghorn, (2023) A Markov chain model for geographical accessibility, Spatial Statistics, 55, doi:10.1016/j.spasta.2023.100748.
Iхсанов, Ш. М., Лопушанська, В. В. (2011) Використання ланцюгів Маркова для прогнозування соціально-економічних процесів. Актуальні проблеми економіки. №1(115). 258-267. . Retrieved from URL https://dspace.mnau.edu.ua/jspui/handle/123456789/175. (in Ukrainian)
Грімнак О. В., Катренко А. В. (2008) Система підтримання прийняття рішень для багатокрокових процесів з використанням ланцюгів Маркова. Вісник Національного університету «Львівська політехніка» «Інформаційні системи та мережі». 631 (3). С. 148-155. Retrieved from URL https://science.lpnu.ua/uk/sisn/vsi-vypusky/vypusk-631-2008/systema-pidtrymannya-pryynyattya-rishen-dlya-bagatokrokovyh (in Ukrainian)
Bányai T., Landschützer C., & Bányai Á, (2018). Markov-Chain Simulation-Based Analysis of Human Resource Structure: How Staff Deployment and Staffing Affect Sustainable Human Resource Strategy. Sustainability, 10(10), 1-21, doi:10.3390/su10103692
Головне управління статистики і Черкаській області (2020). Сільське, лісове та рибне господарство. Retrieved from URL https://www.ck.ukrstat.gov.ua/?p=stat_inform. (in Ukrainian)
Published
How to Cite
Issue
Section
License
Copyright (c) 2025 Анатолій Пашко, Дмитро Дякон

This work is licensed under a Creative Commons Attribution-NonCommercial-ShareAlike 4.0 International License.