MATHEMATICAL MODEL AND ALGORITHMIZATION OF FUNCTIONS OF THE COMPUTING CORE OF AN INTELLIGENT INTERNAL AUDIT SUPPORT SYSTEM

Authors

DOI:

https://doi.org/10.28925/2663-4023.2025.27.604616

Keywords:

intelligent system; mathematical modeling; machine learning; risk forecasting; logistic regression; decision support; internal audit; audit automation

Abstract

The article addresses the synthesis of the computing core of an intelligent internal audit support system (IIASS) for a business entity. A formalized mathematical model of the IIASS is developed, focusing on the assessment of economic risks that may affect a company's financial stability, profitability, and operational efficiency. Unlike most existing approaches that rely on manual audit procedures or fragmented statistical methods, the proposed unified model integrates logical, probabilistic, and fuzzy components within a single intelligent environment. The audit object feature space is examined as a foundation for the application of machine learning methods and rule-based logic in automated risk evaluation. A risk function is constructed to model the criticality level of internal audit objects through a parameterized combination of features, incorporating feature weighting and an adaptive decision threshold mechanism. A hybrid architecture for the IIASS is proposed, combining rule-based logic, logistic regression, and fuzzy inference in a unified computing framework. The developed model, intended to serve as the core of the IIASS, provides not only risk/non-risk classification but also substantiated interpretation of risk levels as normalized scores, offering managerial value to business entities. The results presented may form the basis for further software implementation of the IIASS, integration with corporate ERP systems, and functional expansion through ensemble learning strategies.

Downloads

Download data is not yet available.

References

Hnatchenko, D. D. (2023). Modeliuvannia intelektualnoi systemy pidtrymky vnutrishnoho audytu subiekta hospodariuvannia. Upravlinnia rozvytkom skladnykh system. Kyiv, (54), 114–121 https://doi.org/10.32347/2412-9933.2023.54.114-121

Kryvoruchko, Olena. "Funktsionalni osoblyvosti intelektualnoi systemy vnutrishnoho audytu." Elektronne fakhove naukove vydannia «Kiberbezpeka: osvita, nauka, tekhnika» 4.24 (2024): 40–49. https://doi.org/10.28925/2663-4023.2024.24.4049

Mykhailenko, O. V., Nikolaienko, S. M., Nasikanova, O. O. (2017). Upravlinnia ryzykamy diialnosti pidpryiemstva. Problemy systemnoho pidkhodu v ekonomitsi, (6(1)), 144–147. https://psae-jrnl.nau.in.ua/journal/6_62_1_2017_ukr/24.pdf

Dotsenko, I. O. (2013). Formuvannia systemy otsiniuvannia rivnia ekonomichnoi bezpeky pidpryiemstva z urakhuvanniam vplyvu pidpryiemnytskikh ryzykiv. Visnyk Odeskoho natsionalnoho universytetu. Ekonomika, (18, Vyp. 1), 69–78. https://elar.khmnu.edu.ua/handle/123456789/4093

Adamenko, M. I., Berezutskyi, V. V., Kuchuk, N. H., Palant, O. Yu. (2015). Zahalnosystemnyi ryzyk vidmovy systemy pislia modernizatsii. Systemy obrobky informatsii, (10), 159–162.

http://www.irbis-nbuv.gov.ua/cgi-bin/irbis_nbuv/cgiirbis_64.exe?I21DBN=LINK&P21DBN=UJRN&Z21ID=&S21REF=10&S21CNR=20&S21STN=1&S21FMT=ASP_meta&C21COM=S&2_S21P03=FILA=&2_S21STR=soi_2015_10_36

Roskladka, A. A. (2015). Vyznachennia vahovykh koefitsiientiv systemy kliuchovykh pokaznykiv protsesu. Problemy i perspektyvy rozvytku pidpryiemnytstva, (1(2)), 82–88. https://api.dspace.khadi.kharkov.ua/server/api/core/bitstreams/224c40e6-9d03-414a-b9d5-8fea6774dc95/content

Loi, A. V. (2023). Identyfikatsiia ryzykiv formuvannia ekonomichnoho potentsialu pidpryiemstva torhivli. Aktual'ni Problemy Ekonomiky = Actual Problems in Economics, (265), 47–56.

Huang, J. C., Tsai, Y. C., Wu, P. Y., Lien, Y. H., Chien, C. Y., Kuo, C. F., & Kuo, C. H. (2020). Predictive modeling of blood pressure during hemodialysis: a comparison of linear model, random forest, support vector regression, XGBoost, LASSO regression and ensemble method. Computer methods and programs in biomedicine, 195, 105536. DOI:10.1016/j.cmpb.2020.105536

Fatima, S., Hussain, A., Amir, S. B., Ahmed, S. H., & Aslam, S. M. H. (2023). XGBoost and random forest algorithms: an in depth analysis. Pakistan Journal of Scientific Research, 3(1), 26–31. DOI:10.57041/pjosr.v3i1.946

Demianenko, T. Ye. (2016). Teoretychni aspekty pohlyblennia sutnosti vnutrishnoho audytu. Oblik i finansy, (3), 122–127. http://www.irbis-nbuv.gov.ua/cgi-bin/irbis_nbuv/cgiirbis_64.exe?I21DBN=LINK&P21DBN=UJRN&Z21ID=&S21REF=10&S21CNR=20&S21STN=1&S21FMT=ASP_meta&C21COM=S&2_S21P03=FILA=&2_S21STR=Vonu_econ_2013_18_1_10

Pererva, P., Maslak, O., Kobieleva, T., Kuchynskyi, V., Illiashenko, S. (2021). Efektyvnist informatsiinykh tekhnolohii v upravlinni intelektualnoiu vlasnistiu promyslovoho pidpryiemstva. Visnyk Natsionalnoho tekhnichnoho universytetu "Kharkivskyi politekhnichnyi instytut" (ekonomichni nauky), (1), 53–58. https://doi.org/10.20998/2519-4461.2021.1.53

Chornohus, H. O. (2016). Ahentna model intelektualnoi informatsiinoi systemy upravlinnia v ekonomitsi. Visnyk Kyivskoho natsionalnoho universytetu imeni Tarasa Shevchenka. Ekonomika, (1), 41–47. http://dx.doi.org/10.17721/1728-2667.2016/178-1/7

Downloads


Abstract views: 31

Published

2025-03-27

How to Cite

Hnatchenko, D., & Desiatko, A. (2025). MATHEMATICAL MODEL AND ALGORITHMIZATION OF FUNCTIONS OF THE COMPUTING CORE OF AN INTELLIGENT INTERNAL AUDIT SUPPORT SYSTEM. Electronic Professional Scientific Journal «Cybersecurity: Education, Science, Technique», 3(27), 604–616. https://doi.org/10.28925/2663-4023.2025.27.604616

Most read articles by the same author(s)

1 2 > >>