RESEARCH ON CYBERSECURITY TECHNOLOGIES FOR BANKING SYSTEMS USING ARTIFICIAL INTELLIGENCE

Authors

DOI:

https://doi.org/10.28925/2663-4023.2025.29.930

Keywords:

cybersecurity, banking systems, artificial intelligence, machine learning, information security, fraud detection, behavioral biometrics, phishing, compliance

Abstract

The article explores the application of modern artificial intelligence (AI) technologies as a tool for ensuring cybersecurity in banking systems. Amid the growing number of sophisticated cyberattacks, traditional protection methods are no longer sufficient to provide an adequate level of security, making the implementation of intelligent systems capable of automatically analyzing large volumes of data and promptly responding to threats highly relevant. The study examines key approaches to integrating AI into the processes of detecting anomalies and cybercrimes in the banking sector. It analyzes core AI technologies used for real-time fraud detection, behavioral biometrics, countering phishing attacks, and automating compliance and audit processes. Based on practical case studies, the high efficiency of AI in enhancing threat detection accuracy, reducing response times, and minimizing false positives is demonstrated. Particular attention is given to the adaptability and self-learning capabilities of intelligent security systems in a dynamic threat environment. The advantages of integrating AI into the banking security infrastructure are highlighted, alongside the main challenges associated with implementing such solutions. The research results confirm the promising potential of AI as an effective cybersecurity tool in banking systems.

Downloads

Download data is not yet available.

References

Ovcharenko, T. (2024). Trends in the development and use of artificial intelligence in the banking sector. Economy and Society. https://doi.org/10.32782/2524-0072/2024-67-44

Kholiavko, N., Sadchykova, I., & Kolotok, M. (2023). Directions of use of artificial intelligence in banking institutions. Problems and Prospects of Economics and Management. https://ir.stu.cn.ua/handle/123456789/28945

Danik, N., & Torlopov, A. (2024). Introducing artificial intelligence into banking: A revolution in service and security. International Science Journal of Management Economics & Finance. https://www.researchgate.net/publication/392319259_.

Sharov, S. (2023). Current state of artificial intelligence development and its applications. Ukrainian Studies in the European Context. http://obrii.org.ua/usec/storage/conference/zb_vol6_2023.pdf

BDO Global. (2024). The role of artificial intelligence in cybersecurity: Prediction and prevention of attacks. https://www.bdo.ua/uk-ua/insights-2/information-materials/2024/the-role-of-ai-in-cybersecurity-anticipating-and-preventing-attacks

Willie, A. (2025). The evolution of AI in cybersecurity: From rule-based systems to generative AI. ResearchGate. https://www.researchgate.net/publication/388930668_.

Adhikari, P., Hamal, P., & Baidoo, F. (2024). Artificial intelligence in fraud detection: Revolutionizing financial security. International Journal of Science and Research Archive. https://ijsra.net/content/artificial-intelligence-fraud-detection-revolutionizing-financial-security

Kokkalakonda, N. K. (2022). AI-powered fraud detection in banking: Enhancing security with machine learning algorithms. ResearchGate. https://www.researchgate.net/publication/390357575_.

Tambi, V. K. (2022). AI-powered fraud detection in real-time financial transactions. International Journal of Research in Electronics and Computer Engineering. https://philpapers.org/archive/VARAFD-2.pdf

Cognizant. (2019). Advanced AI/ML solution detects check fraud for a global bank. https://www.cognizant.com/en_us/case-studies/documents/ai-driven-solution-reduces-fraud-risk-for-bank-codex3688.pdf

Visa. (n.d.). Visa announces generative AI-powered fraud solution to combat account attacks. Visa Official Website. https://usa.visa.com/about-visa/newsroom/press-releases.releaseId.20661.html

Kokal, S., Vanamala, M., & Dave, R. (2023). Deep learning and machine learning, better together than apart: A review on biometrics mobile authentication. Journal of Cybersecurity and Privacy, 3(2), 13. https://www.mdpi.com/2624-800X/3/2/13

Pryor, L., Dave, R., Seliya, J., & Boone, E. S. (2021). Machine learning algorithms in user authentication schemes. In Proceedings of the International Conference on Electrical, Computer and Energy Technologies (ICECET). https://arxiv.org/pdf/2110.07826

Ackerson, J. M., Dave, R., & Seliya, N. (2021). Applications of recurrent neural network for biometric authentication & anomaly detection. Information, 12(7), 272. https://www.mdpi.com/2078-2489/12/7/272

Visa Navigate. (2025). Visa boosts AI capabilities to further reduce fraud. Visa Navigate. https://navigate.visa.com/europe/security/visa-boosts-ai-capabilities-to-further-reduce-fraud/

Liang, L.-H. (2025). Mastercard integrates Feedzai behavioral biometrics for fraud protection. Biometrics News. https://www.biometricupdate.com/202502/mastercard-integrates-feedzai-behavioral-biometrics-for-fraud-protection

PYMNTS. (2025). Banks, merchants turn to behavioral biometrics to fight fraud. https://www.pymnts.com/partnerships/2025/synchrony-teams-with-adobe-commerce-to-offer-flexible-financing/

Asmar, M., & Tuqan, A. (2023). Integrating machine learning for sustaining cybersecurity in digital banks. Heliyon, 10(1), e37571. https://doi.org/10.1016/j.heliyon.2024.e37571

Lim, B., Huerta, R., Sotelo, A., Quintela, A., & Kumar, P. (2025). EXPLICATE: Enhancing phishing detection through explainable AI and LLM-powered interpretability. ResearchGate. https://www.researchgate.net/publication/390248105_.

Evans, K., Abuadbba, A., Wu, T., Moore, K., Ahmed, M., Pogrebna, G., Nepal, S., & Johnstone, M. (2022). RAIDER: Reinforcement-aided spear phishing detector. In Proceedings of the International Conference on Network and System Security. https://www.researchgate.net/publication/366052395_.

Kothandapani, H. P. (2024). Automating financial compliance with AI: A new era in regulatory technology (RegTech). International Journal of Science and Research Archive. https://ijsra.net/sites/default/files/IJSRA-2024-0040.pdf

Agarwal, R., Kremer, A., Kristensen, I., & Luget, A. (2024). How generative AI can help banks manage risk and compliance. McKinsey & Company. https://www.mckinsey.com/capabilities/risk-and-resilience/our-insights/how-generative-ai-can-help-banks-manage-risk-and-compliance

KPMG. (2024). KPMG інтегрує штучний інтелект у власну аудиторську платформу KPMG Clara. https://kpmg.com/ua/uk/home/media/press-releases/2024/09/kpmg-intehruye-ai-u-vlasnu-audytorsku-platformu-kpmg-clara.html

Smirnov, O. A., Konstantynova, L. V., Konoplitska-Slobodeniuk, O. K., Kozirova, N. V., Yakymenko, N. M., Dorenskyi, O. P., & Buravchenko, K. O. (2025). Exploring artificial intelligence tools for working with databases and data analysis. Cybersecurity: Education, Science, Technology, 3(27), 429–448. https://doi.org/10.28925/2663-4023.2025.27.763

Smirnova, T. V., Konoplitska-Slobodeniuk, O. K., Buravchenko, K. O., Smirnov, S. A., Kravchuk, O. V., Kozirova, N. L., & Smirnov, O. A. (2024). Research on cybersecurity technologies for cloud services: IaaS, PaaS, and SaaS. Cybersecurity: Education, Science, Technology, 4(24), 6–27. https://doi.org/10.28925/2663-4023.2024.24.627

Kuznetsov, O., Smirnov, O., Mormul, M., Kotukh, Y., & Zvieriev, V. (2024). Comparative research on cryptocurrency efficiency: An objective analysis of key metrics. International Journal of Computing, 23(4), 563–573. https://doi.org/10.47839/ijc.23.4.3755

Kuznetsov, O., Frontoni, E., Kuznetsova, K., Smirnov, O., & Kostenko, V. (2024). Blockchain applications in metaverse environments: New horizons. In Advanced Metaverse Wireless Communication Systems (pp. 255–293). https://doi.org/10.1049/PBTE112E_ch10

Kuznetsov, O., Frontoni, E., Chevardin, V., Smirnov, O., & Imoize, A. L. (2024). Advancing metaverse security with cryptographic innovations. In Advanced Metaverse Wireless Communication Systems (pp. 351–386). https://doi.org/10.1049/PBTE112E_ch13

Downloads


Abstract views: 17

Published

2025-09-26

How to Cite

Usik, P., Smirnova, T., Buravchenko, K., Smirnov, O., Ulichev, O., & Smirnov, S. (2025). RESEARCH ON CYBERSECURITY TECHNOLOGIES FOR BANKING SYSTEMS USING ARTIFICIAL INTELLIGENCE . Electronic Professional Scientific Journal «Cybersecurity: Education, Science, Technique», 1(29), 704–716. https://doi.org/10.28925/2663-4023.2025.29.930

Most read articles by the same author(s)

1 2 > >>