RESEARCH OF CLOUD TECHNOLOGIES AND ARTIFICIAL INTELLIGENCE METHODS FOR THE IMPLEMENTATION OF TECHNOLOGICAL PROCESSES IN CRITICAL INFRASTRUCTURE OF THE STATE
DOI:
https://doi.org/10.28925/2663-4023.2025.31.963Keywords:
critical infrastructure security, information technology, technological processes, cloud technologies, artificial intelligenceAbstract
The paper conducted a study of scientific publications and research projects on the support of technological processes in the critical infrastructure of the state. An objective contradiction was identified (manifested between the practical need to implement multi-parameter monitoring, automation and cyber protection of technological processes in the critical infrastructure of the state and the scientific and methodological insufficiency of existing approaches that do not provide for the integrated use of cloud technologies to support such processes). The formulation of a further scientific task was formalized, which consists in developing methods and models for supporting technological processes in the critical infrastructure of the state based on cloud technologies, which will ensure: increasing the efficiency and flexibility of technological process management; creating means of multi-parameter monitoring of key performance indicators; improving information and communication systems and networks for the automation of production processes; an appropriate level of cyber protection of data; forming holistic approaches, methodologies and recommendations for the implementation of cloud technologies in the critical infrastructure of the state.
Downloads
References
Martynov, S., Kunytskyi, S., Shatnyi, N., Ivanchuk, O., & Galkina, O. (2022). Optimization of the technological process of deironing groundwater in critical water supply infrastructure of settlements. 2022 IEEE 17th International Conference on Computer Sciences and Information Technologies (CSIT), 535–538. https://doi.org/10.1109/CSIT56902.2022.10000724
Teichmann, F. (2025). Cybersecurity of critical infrastructure in Europe: The NIS2 directive in focus. International Cybersecurity Law Review, 6, 207–220. https://doi.org/10.1365/s43439-025-00154-4
Pastorek, A., & Tundis, A. (2024). Navigating the landscape of IoT security and associated risks in critical infrastructures. Proceedings of the 19th International Conference on Availability, Reliability and Security (ARES ’24), Article 112, 1–7. https://doi.org/10.1145/3664476.3669979
Ani, U. P. D., He, H. (Mary), & Tiwari, A. (2016). Review of cybersecurity issues in industrial critical infrastructure: Manufacturing in perspective. Journal of Cyber Security Technology, 1(1), 32–74. https://doi.org/10.1080/23742917.2016.1252211
Giannakidou, S., et al. (2022). 5G-enabled NetApp for predictive maintenance in critical infrastructures. 2022 5th World Symposium on Communication Engineering, 129–132. https://doi.org/10.1109/WSCE56210.2022.9916037
Wakolbinger, C., Fickert, L., Brandauer, W., Aigner, M., & Malleck, H. (2013). A vigilant concept for smart emergency supply of critical infrastructure. International ETG-Congress 2013; Symposium 1: Security in Critical Infrastructures Today, 1–4.
Woltjer, R., Hermelin, J., Nilsson, S., Oskarsson, P.-A., & Hallberg, N. (2018). Using requirements engineering in the development of resilience guidelines for critical infrastructure. 2018 13th Annual Conference on System of Systems Engineering (SoSE), 615–622. https://doi.org/10.1109/SYSOSE.2018.8428749
Malik, M. Z., Nazir, S., & Khan, H. U. (2023). Artificial intelligence based system on enhancing the capabilities of transport system: A systemic literature review. 2023 IEEE Symposium on Industrial Electronics & Applications, 1–6. https://doi.org/10.1109/ISIEA58478.2023.10212340
Chen, K., Zhou, X., Bao, Z., et al. (2025). Artificial intelligence in infrastructure construction: A critical review. Frontiers in Engineering Management, 12, 24–38. https://doi.org/10.1007/s42524-024-3128-5
Odeh, J. O., Yang, X., Samuel, O. W., et al. (2025). Systematic investigation of privacy preservation techniques for industrial IoT-enabled critical edge network infrastructure. Cluster Computing, 28, 407. https://doi.org/10.1007/s10586-025-05114-5
Arpagian, N. (2024). The threat of technological obsolescence for cybersecurity in the energy sector. In A. Barichella & J. Yada (Eds.), The Palgrave handbook of cybersecurity, technologies and energy transitions. Palgrave Macmillan. https://doi.org/10.1007/978-3-031-04196-9_6-1
Borah, G. (2025). Urban water stress: Climate change implications for water supply in cities. Water Conservation Science and Engineering, 10, 20. https://doi.org/10.1007/s41101-025-00344-5
Jackson, J. S., Kantamaneni, K., Ganeshu, P., et al. (2025). Assessment of the role of nanotechnology in water sector: An expert opinion. International Journal of Energy and Water Resources. https://doi.org/10.1007/s42108-025-00389-1
Turja, T., Kork, A. A., Ilomäki, S., et al. (2025). Care robot literacy: Integrating AI ethics and technological literacy in contemporary healthcare. AI and Ethics, 5, 2623–2640. https://doi.org/10.1007/s43681-024-00576-6
Ren, H., Kwok, Q., Sun, M., et al. (2025). Toward artificial general intelligence in health care. The Visual Computer, 41, 7341–7350. https://doi.org/10.1007/s00371-025-03808-w
Ojo-Gonzalez, K., Bonilla-Morales, B., & Vargas-Lombardo, M. (2024). Software quality in the IoT in health sector and commerce sector. In T. Guarda, F. Portela, & J. M. Diaz-Nafria (Eds.), Advanced research in technologies, information, innovation and sustainability (ARTIIS 2023) (Vol. 1935). Springer. https://doi.org/10.1007/978-3-031-48858-0_2
Urkude, S. V., & Sahoo, D. (2025). Adoption of robotics technology in health care: An empirical study in emerging economy. In V. Bhateja et al. (Eds.), Innovations in information and decision sciences (FICTA 2024, Vol. 422). Springer. https://doi.org/10.1007/978-981-96-0147-9_24
Goh, J. J. K. (2025). Digital health and technology adoption in public health. In B. Y. F. Fong (Ed.), The handbook of public health in the Asia-Pacific. Springer. https://doi.org/10.1007/978-981-97-1788-0_32-1
Balevičiūtė, J., Šopaga, G., & Jarašūnienė, A. (2025). Application of biometric technologies in transport and logistics companies. In O. Prentkovskis et al. (Eds.), TRANSBALTICA XV: Transportation science and technology. Springer. https://doi.org/10.1007/978-3-031-85390-6_31
Cali, U., Gourisetti, S. N. G., Sebastian-Cardenas, D. J., et al. (2024). Emerging technologies for privacy preservation in energy systems. Proceedings of the 2024 European Interdisciplinary Cybersecurity Conference (EICC ’24), 163–170. https://doi.org/10.1145/3655693.3656546
Slany, V., Krcalova, E., Balej, J., Zach, M., Kucova, T., Prauzek, M., & Martinek, R. (2025). Smart Water-IoT: Harnessing IoT and AI for efficient water management. ACM Computing Surveys, 57(12), Article 304. https://doi.org/10.1145/3744338
Nygard, A. R., & Katsikas, S. (2025). Digital supply chain security for power sector operators in the light of the new EU directives and regulation. Proceedings of PCI ’24, 70–80. https://doi.org/10.1145/3716554.3716565
Cali, Ü., Catak, F. Ö., Balogh, Z. G., Ugarelli, R., & Jaatun, M. G. (2023). Cyber-physical hardening of the digital water infrastructure. Proceedings of EICC ’23, 181–188. https://doi.org/10.1145/3590777.3591408
Marcos-Pablos, S., García-Holgado, A., & García-Peñalvo, F. J. (2018). Trends in European research projects focused on technological ecosystems in the health sector. Proceedings of TEEM'18, 495–503. https://doi.org/10.1145/3284179.3284263
Jeyakumar, S. T., Ko, R., & Muthukkumarasamy, V. (2023). A framework for user-centric visualisation of blockchain transactions in critical infrastructure. Proceedings of BSCI ’23, 44–52. https://doi.org/10.1145/3594556.3594624
Pal, R., Sequeira, R. X., Zeijlmaker, S., & Siegel, M. (2025). Optimizing cyber-resilience in critical infrastructure networks. Proceedings of the Winter Simulation Conference (WSC ’24), 774–785.
Bederna, Z., & Szadeczky, T. (2022). Industry 4.0-based critical infrastructure and the NIS Directive. Proceedings of CEEeGov ’22, 93–99. https://doi.org/10.1145/3551504.3551546
Alghamdi, M., & Alghamdi, S. (2024). Exploring quantum computing use cases for critical national infrastructures. Proceedings of ICFNDS ’23, 25–32. https://doi.org/10.1145/3644713.3644718
Akerele, A., Leppert, W., Somerville, S., & Amoussou, G.-A. (2023). The digital twins incident response to improve the security of power system critical infrastructure. Journal of Computer Science Colleges, 39(3), 86–99.
Perez-Cerrolaza, J., Abella, J., Borg, M., Donzella, C., Cerquides, J., Cazorla, F. J., Englund, C., Tauber, M., Nikolakopoulos, G., & Flores, J. L. (2024). Artificial intelligence for safety-critical systems in industrial and transportation domains: A survey. ACM Computing Surveys, 56(7), Article 176. https://doi.org/10.1145/3626314
Lee, J. (2025). Narrative-based AI ethics education for emerging technologies: Leveraging ‘The Monkey's Paw’ for AI alignment and social justice. 2025 IEEE International Symposium on Ethics in Engineering, Science, and Technology (ETHICS), 1. https://doi.org/10.1109/ETHICS65148.2025.11098410
Wiese, L., Rathinam, S. S., Oschinski, M., DeWitt, B., & Schiff, D. S. (2025). AI ethics and governance in the job market: Trends, skills, and sectoral demand. IEEE Transactions on Technology and Society. https://doi.org/10.1109/TTS.2025.3567143
Potasznik, A. (2025). Press release ethics in AI: Performative ethics in for-profit AI companies. 2025 IEEE International Symposium on Ethics in Engineering, Science, and Technology (ETHICS), 1–10. https://doi.org/10.1109/ETHICS65148.2025.11098431
Smirnova, T., Al-Oraiqat, A. M., Drieiev, O., Smirnov, O., Polishchuk, L., Khan, S., Hasan, Y. M. Y., Amro, A. M., & AlRawashdeh, H. S. (2022). Method for determining treated metal surface quality using computer vision technology. Sensors, 22(16), 6223. https://www.scopus.com/pages/publications/85137126823
Smirnova, T., Odarchenko, R., Smirnov, O., Bondar, S., & Volosheniuk, D. (2023). Optimal structure construction of private 5G network for the needs of enterprises. Lecture Notes on Data Engineering and Communications Technologies, 178, 208–223. https://www.scopus.com/pages/publications/85162950840
Al-Mudhafar Aqeel, A. M., Smirnova, T., Buravchenko, K., & Smirnov, O. (2023). The method of assessing and improving the user experience of subscribers in software-configured networks based on machine learning. Advanced Information Systems, 7(2), 49–56. https://www.scopus.com/pages/publications/85176960353
Al-Azzeh, J., Ayyoub, B., Mesleh, A., Smirnova, T., Gnatyuk, S., Drieiev, O., Smirnov, O., & Dorenskyi, O. (2025). Cloud-based information system for evaluating caverns in the process of blasting metal surfaces of details. International Review on Modelling and Simulations, 18(1), 32–42. https://doi.org/10.15866/iremos.v18i1.25596
Published
How to Cite
Issue
Section
License
Copyright (c) 2025 Олексій Смірнов, Тетяна Смірнова

This work is licensed under a Creative Commons Attribution-NonCommercial-ShareAlike 4.0 International License.