AUTOMATED DETECTION OF ANOMALIES IN CORPORATE WIRELESS NETWORK TRAFFIC USING PYTHON: METHODS, IMPLEMENTATION, AND EFFECTIVENESS EVALUATION

Authors

DOI:

https://doi.org/10.28925/2663-4023.2025.29.939

Keywords:

anomaly detection, wireless networks, machine learning, XGBoost, CNN-GRU, SHAP, IDS, Wi-Fi traffic

Abstract

This article presents the results of a study focused on the development and comparative evaluation of models for automated anomaly detection in corporate wireless network traffic. The introduction substantiates the relevance of cybersecurity challenges in the context of increasing Wi-Fi traffic volumes and the growing complexity of attack types, which necessitate the use of intelligent intrusion detection systems. The theoretical foundations section reviews signature-based and behavioral analysis concepts, IDS/WIDS system principles, and modern approaches to anomaly detection using machine learning and deep learning. Special attention is given to explainable artificial intelligence (XAI) and its role in enhancing model transparency.

The data selection and preprocessing section describes the use of two representative datasets — AWID-3 and UNSW-NB15 — covering a wide range of attacks and normal traffic. Preprocessing steps included data cleaning, normalization, categorization, and class balancing using SMOTE and random undersampling. The implementation section outlines the architectures of SVM, Random Forest, XGBoost, and CNN-GRU models, using Scikit-learn, TensorFlow, Keras, and SHAP libraries. The CNN-GRU model combines convolutional and recurrent layers, enabling effective processing of temporal dependencies in traffic data.

The comprehensive model evaluation section compares performance across accuracy, latency, explainability, and stability metrics. CNN-GRU achieved the highest classification accuracy, while XGBoost demonstrated the best balance between precision and responsiveness. SHAP visualizations revealed that session duration, packet count, and protocol type are the most influential features. Stability analysis under noisy conditions, variable load, and limited training data confirmed the advantages of adaptive architectures.

The conclusions summarize the findings and outline future research directions: integration of models into real-world corporate systems, enhancement of explainability, deployment in 5G/6G and IoT environments, and automation of architecture design using meta-learning techniques.

Downloads

Download data is not yet available.

References

Nguyen, K. D., Fazio, P., & Voznak, M. (2024). A novel deep learning framework for intrusion detection systems in wireless networks. Future Internet, 16(8), 264. https://www.mdpi.com/1999-5903/16/8/264

Shalini, K., & Thatikonda, A. (2023). Autoencoder-based anomaly detection in wireless sensor networks. SSRG International Journal of Electronics and Communication Engineering, 11(8), 151–159. https://doi.org/10.14445/23488549/IJECE-V11I8P116

Prajapati, V. (2025). Python-based IDS for Wi-Fi networks using XGBoost and SHAP. GitHub Repository. https://github.com/VishalPrajapati3112/CodeAlpha_Network_Intrusion-Detection-System

Huang, H., Wang, P., Pei, J., Wang, J., Alexanian, S., & Niyato, D. (2025). Deep learning advancements in anomaly detection: A comprehensive survey. arXiv preprint. https://arxiv.org/pdf/2503.13195

Rhachi, H., Balboul, Y., & Bouayad, A. (2025). Enhanced anomaly detection in IoT networks using deep autoencoders with feature selection techniques. Sensors, 25(10), 3150. https://www.mdpi.com/1424-8220/25/10/3150

Edozie, E., Shuaibu, A. N., Sadiq, B. O., & John, U. K. (2025). Artificial intelligence advances in anomaly detection for telecom networks. Artificial Intelligence Review, 58, Article 100. https://link.springer.com/article/10.1007/s10462-025-11108-x

Kumar, A. (2024). Distributed anomaly detection in wireless sensor networks: A review. International Journal of Innovative Research in Multidisciplinary Physical Sciences, 12(2). https://www.ijirmps.org/papers/2024/2/230509.pdf

Prajapati, V. (2025). Python-based IDS for Wi-Fi networks using XGBoost and SHAP. GitHub Repository. https://github.com/VishalPrajapati3112/CodeAlpha_Network_Intrusion-Detection-System

Rhachi, H., Balboul, Y., & Bouayad, A. (2025). Enhanced anomaly detection in IoT networks using deep autoencoders with feature selection techniques. Sensors, 25(10), 3150. https://www.mdpi.com/1424-8220/25/10/3150

Ren, J., Tang, T., Jia, H., Xu, Z., Fayek, H., Li, X., Ma, S., Xu, X., & Xia, F. (2025). Foundation models for anomaly detection: Vision and challenges. arXiv preprint. https://arxiv.org/abs/2502.06911

Antwarg, L., Mindlin Miller, R., Shapira, B., & Rokach, L. (2020). Explaining anomalies detected by autoencoders using SHAP. Preprint submitted to Journal of Artificial Intelligence. https://arxiv.org/pdf/1903.02407

Imrana, Y., Xiang, Y., Ali, L., Noor, A., Sarpong, K., & Abdullah, M. A. (2024). CNN-GRU-FF: A double-layer feature fusion-based network intrusion detection system using convolutional neural network and gated recurrent units. Complex & Intelligent Systems, 10, 3353–3370. https://link.springer.com/article/10.1007/s40747-023-01313-y

Складанний , П., Костюк, Ю., Рзаєва, С., Самойленко, Ю., & Савченко, Т. (2025). Розробка модульних нейронних мереж для виявлення різних класів мережевих атак. Кібербезпека: освіта, наука, техніка, 3(27), 534–548. https://doi.org/10.28925/2663-4023.2025.27.772

Костюк, Ю., Бебешко, Б., Гулак, Г., Складанний, П., Рзаєва, С., & Хорольська, К. (2024). Забезпечення кібербезпеки та швидкодії передачі даних у безпровідних мережах. Безпека інформації, 30(3), 365–375. https://doi.org/10.18372/2225-5036.30.20357

Костюк, Ю., Бебешко, Б., Крючкова, Л., Литвинов, В., Оксанич, І., Складанний, П., & Хорольська, К. (2024). Захист інформації та безпека обміну даними в безпроводових мобільних мережах з автентифікацією і протоколами обміну ключами. Кібербезпека: освіта, наука, техніка, 1(25), 229–252. https://doi.org/10.28925/2663-4023.2024.25.229252

V. Sokolov, P. Skladannyi, A. Platonenko, Jump-Stay Jamming Attack on Wi-Fi Systems, in: IEEE 18th International Conference on Computer Science and Information Technologies (2023) 1–5. doi: 10.1109/CSIT61576.2023.10324031.

Kostiuk, Yu. V., Skladannyi, P. M., Bebeshko, B. T., Khorolska, K. V., Rzaieva, S. L., & Vorokhob, M. V. (2025). Information and communication systems security. [Textbook] Kyiv: Borys Grinchenko Kyiv Metropolitan University.

Kostiuk, Yu. V., Skladannyi, P. M., Hulak, H. M., Bebeshko, B. T., Khorolska, K. V., & Rzaieva, S. L. (2025). Information security systems. [Textbook] Kyiv: Borys Grinchenko Kyiv Metropolitan University.

Hulak, H. M., Zhyltsov, O. B., Kyrychok, R. V., Korshun, N. V., & Skladannyi, P. M. (2023). Enterprise information and cyber security. [Textbook] Kyiv: Borys Grinchenko Kyiv Metropolitan University.

Downloads


Abstract views: 24

Published

2025-09-26

How to Cite

Sobolenko , I., & Platonenko, A. (2025). AUTOMATED DETECTION OF ANOMALIES IN CORPORATE WIRELESS NETWORK TRAFFIC USING PYTHON: METHODS, IMPLEMENTATION, AND EFFECTIVENESS EVALUATION. Electronic Professional Scientific Journal «Cybersecurity: Education, Science, Technique», 1(29), 777–788. https://doi.org/10.28925/2663-4023.2025.29.939

Most read articles by the same author(s)